This is an old version, view current version.

18.2 Pareto Type 2 Distribution

18.2.1 Probability Density Function

If μR, λR+, and αR+, then for yμ, Pareto_Type_2(y|μ,λ,α)= αλ(1+yμλ)(α+1).

Note that the Lomax distribution is a Pareto Type 2 distribution with μ=0.

18.2.2 Sampling Statement

y ~ pareto_type_2(mu, lambda, alpha)

Increment target log probability density with pareto_type_2_lpdf(y | mu, lambda, alpha) dropping constant additive terms.

18.2.3 Stan Functions

real pareto_type_2_lpdf(reals y | reals mu, reals lambda, reals alpha)
The log of the Pareto Type 2 density of y given location mu, scale lambda, and shape alpha

real pareto_type_2_cdf(reals y, reals mu, reals lambda, reals alpha)
The Pareto Type 2 cumulative distribution function of y given location mu, scale lambda, and shape alpha

real pareto_type_2_lcdf(reals y | reals mu, reals lambda, reals alpha)
The log of the Pareto Type 2 cumulative distribution function of y given location mu, scale lambda, and shape alpha

real pareto_type_2_lccdf(reals y | reals mu, reals lambda, reals alpha)
The log of the Pareto Type 2 complementary cumulative distribution function of y given location mu, scale lambda, and shape alpha

R pareto_type_2_rng(reals mu, reals lambda, reals alpha)
Generate a Pareto Type 2 variate with location mu, scale lambda, and shape alpha; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.