This is an old version, view current version.

18.1 Pareto Distribution

18.1.1 Probability Density Function

If yminR+ and αR+, then for yR+ with yymin, Pareto(y|ymin,α)=αyαminyα+1.

18.1.2 Sampling Statement

y ~ pareto(y_min, alpha)

Increment target log probability density with pareto_lpdf(y | y_min, alpha) dropping constant additive terms.

18.1.3 Stan Functions

real pareto_lpdf(reals y | reals y_min, reals alpha)
The log of the Pareto density of y given positive minimum value y_min and shape alpha

real pareto_cdf(reals y, reals y_min, reals alpha)
The Pareto cumulative distribution function of y given positive minimum value y_min and shape alpha

real pareto_lcdf(reals y | reals y_min, reals alpha)
The log of the Pareto cumulative distribution function of y given positive minimum value y_min and shape alpha

real pareto_lccdf(reals y | reals y_min, reals alpha)
The log of the Pareto complementary cumulative distribution function of y given positive minimum value y_min and shape alpha

R pareto_rng(reals y_min, reals alpha)
Generate a Pareto variate with positive minimum value y_min and shape alpha; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.