This is an old version, view current version.

27.4 Posterior predictive simulation in Stan

Posterior predictive quantities can be coded in Stan using the generated quantities block.

27.4.1 Simple Poisson model

For example, consider a simple Poisson model for count data with a rate parameter \(\lambda > 0\) following a gamma-distributed prior, \[ \lambda \sim \textrm{gamma}(1, 1). \] The likelihood for \(N\) observations \(y_1, \ldots, y_N\) is modeled as Poisson, \[ y_n \sim \textrm{poisson}(\lambda). \]

27.4.2 Stan code

The following Stan program defines a variable for \(\tilde{y}\) by random number generation in the generated quantities block.

data {
  int<lower=0> N;
  array[N] int<lower=0> y;
}
parameters {
  real<lower=0> lambda;
}
model {
  lambda ~ gamma(1, 1);
  y ~ poisson(lambda);
}
generated quantities {
  int<lower=0> y_tilde = poisson_rng(lambda);
}

The random draw from the sampling distribution for \(\tilde{y}\) is coded using Stan’s Poisson random number generator in the generated quantities block. This accounts for the sampling component of the uncertainty; Stan’s posterior sampler will account for the estimation uncertainty, generating a new \(\tilde{y}^{(m)} \sim p(y \mid \lambda^{(m)})\) for each posterior draw \(\lambda^{(m)} \sim p(\theta \mid y).\)

The posterior draws \(\tilde{y}^{(m)}\) may be used to estimate the expected value of \(\tilde{y}\) or any of its quantiles or posterior intervals, as well as event probabilities involving \(\tilde{y}\). In general, \(\mathbb{E}[f(\tilde{y}, \theta) \mid y]\) may be evaluated as \[ \mathbb{E}[f(\tilde{y}, \theta) \mid y] \approx \frac{1}{M} \sum_{m=1}^M f(\tilde{y}^{(m)}, \theta^{(m)}), \] which is just the posterior mean of \(f(\tilde{y}, \theta).\) This quantity is computed by Stan if the value of \(f(\tilde{y}, \theta)\) is assigned to a variable in the generated quantities block. That is, if we have

generated quantities {
  real f_val = f(y_tilde, theta);
  // ...
}

where the value of \(f(\tilde{y}, \theta)\) is assigned to variable f_val, then the posterior mean of f_val will be the expectation \(\mathbb{E}[f(\tilde{y}, \theta) \mid y]\).

27.4.3 Analytic posterior and posterior predictive

The gamma distribution is the conjugate prior distribution for the Poisson distribution, so the posterior density \(p(\lambda \mid y)\) will also follow a gamma distribution.

Because the posterior follows a gamma distribution and the sampling distribution is Poisson, the posterior predictive \(p(\tilde{y} \mid y)\) will follow a negative binomial distribution, because the negative binomial is defined as a compound gamma-Poisson. That is, \(y \sim \textrm{negative-binomial}(\alpha, \beta)\) if \(\lambda \sim \textrm{gamma}(\alpha, \beta)\) and \(y \sim \textrm{poisson}(\lambda).\) Rather than marginalizing out the rate parameter \(\lambda\) analytically as can be done to define the negative binomial probability mass function, the rate \(\lambda^{(m)} \sim p(\lambda \mid y)\) is sampled from the posterior and then used to generate a draw of \(\tilde{y}^{(m)} \sim p(y \mid \lambda^{(m)}).\)