Package index
-
rstanarmrstanarm-package - Applied Regression Modeling via RStan
-
available-models - Modeling functions available in rstanarm
-
available-algorithms - Estimation algorithms available for rstanarm models
-
stan_betareg()stan_betareg.fit() - Bayesian beta regression models via Stan
-
stan_biglm()stan_biglm.fit() - Bayesian regularized linear but big models via Stan
-
stan_clogit() - Conditional logistic (clogit) regression models via Stan
-
stan_gamm4()plot_nonlinear() - Bayesian generalized linear additive models with optional group-specific terms via Stan
-
stan_glm()stan_glm.nb()stan_glm.fit() - Bayesian generalized linear models via Stan
-
stan_glmer()stan_lmer()stan_glmer.nb() - Bayesian generalized linear models with group-specific terms via Stan
-
stan_jm() - Bayesian joint longitudinal and time-to-event models via Stan
-
stan_aov()stan_lm()stan_lm.wfit()stan_lm.fit() - Bayesian regularized linear models via Stan
-
stan_mvmer() - Bayesian multivariate generalized linear models with correlated group-specific terms via Stan
-
stan_nlmer() - Bayesian nonlinear models with group-specific terms via Stan
-
stan_polr()stan_polr.fit() - Bayesian ordinal regression models via Stan
-
normal()student_t()cauchy()hs()hs_plus()laplace()lasso()product_normal()exponential()decov()lkj()dirichlet()R2()default_prior_intercept()default_prior_coef() - Prior distributions and options
-
stanreg-objects - Fitted model objects
-
as.matrix(<stanreg>)as.array(<stanreg>)as.data.frame(<stanreg>) - Extract the posterior sample
-
bayes_R2(<stanreg>)loo_R2(<stanreg>) - Compute a Bayesian version of R-squared or LOO-adjusted R-squared for regression models.
-
kfold(<stanreg>) - K-fold cross-validation
-
launch_shinystan(<stanreg>) - Using the ShinyStan GUI with rstanarm models
-
log_lik(<stanreg>)log_lik(<stanmvreg>)log_lik(<stanjm>) - Pointwise log-likelihood matrix
-
loo(<stanreg>)waic(<stanreg>)loo_compare(<stanreg>)loo_compare(<stanreg_list>)loo_model_weights(<stanreg_list>)compare_models() - Information criteria and cross-validation
-
loo_predict(<stanreg>)loo_linpred(<stanreg>)loo_predictive_interval(<stanreg>) - Compute weighted expectations using LOO
-
pairs(<stanreg>) - Pairs method for stanreg objects
-
plot(<stanreg>) - Plot method for stanreg objects
-
posterior_interval(<stanreg>) - Posterior uncertainty intervals
-
posterior_linpred(<stanreg>)posterior_epred(<stanreg>) - Posterior distribution of the (possibly transformed) linear predictor
-
posterior_predict(<stanreg>)posterior_predict(<stanmvreg>) - Draw from posterior predictive distribution
-
posterior_vs_prior() - Juxtapose prior and posterior
-
pp_check(<stanreg>) - Graphical posterior predictive checks
-
predict(<stanreg>) - Predict method for stanreg objects
-
predictive_error(<stanreg>)predictive_error(<matrix>)predictive_error(<ppd>) - In-sample or out-of-sample predictive errors
-
predictive_interval(<stanreg>)predictive_interval(<matrix>)predictive_interval(<ppd>) - Predictive intervals
-
print(<stanreg>)print(<stanmvreg>) - Print method for stanreg objects
-
prior_summary(<stanreg>) - Summarize the priors used for an rstanarm model
-
as_draws(<stanreg>)as_draws_matrix(<stanreg>)as_draws_array(<stanreg>)as_draws_df(<stanreg>)as_draws_list(<stanreg>)as_draws_rvars(<stanreg>) - Create a
drawsobject from astanregobject -
nobs(<stanmvreg>)coef(<stanreg>)confint(<stanreg>)fitted(<stanreg>)nobs(<stanreg>)residuals(<stanreg>)se(<stanreg>)update(<stanreg>)vcov(<stanreg>)fixef(<stanreg>)ngrps(<stanreg>)nsamples(<stanreg>)ranef(<stanreg>)sigma(<stanreg>)VarCorr(<stanreg>) - Methods for stanreg objects
-
summary(<stanreg>)print(<summary.stanreg>)as.data.frame(<summary.stanreg>)summary(<stanmvreg>)print(<summary.stanmvreg>) - Summary method for stanreg objects
-
posterior_survfit() - Estimate subject-specific or standardised survival probabilities
-
posterior_traj() - Estimate the subject-specific or marginal longitudinal trajectory
-
ps_check() - Graphical checks of the estimated survival function
-
coef(<stanmvreg>)fitted(<stanmvreg>)residuals(<stanmvreg>)se(<stanmvreg>)formula(<stanmvreg>)update(<stanmvreg>)update(<stanjm>)fixef(<stanmvreg>)ngrps(<stanmvreg>)ranef(<stanmvreg>)sigma(<stanmvreg>) - Methods for stanmvreg objects
-
plot(<predict.stanjm>) - Plot the estimated subject-specific or marginal longitudinal trajectory
-
plot(<survfit.stanjm>)plot_stack_jm() - Plot the estimated subject-specific or marginal survival function
-
rstanarm-datasetskidiqroacheswellsbball1970bball2006mortalitytumorsradonpbcLongpbcSurv - Datasets for rstanarm examples
-
example_model - Example model
-
example_jm - Example joint longitudinal and time-to-event model
-
stanreg_list()stanmvreg_list()stanjm_list()print(<stanreg_list>) - Create lists of fitted model objects, combine them, or append new models to existing lists of models.
-
adapt_delta adapt_delta: Target average acceptance probability-
QR-argument - The
QRargument -
neg_binomial_2() - Family function for negative binomial GLMs
-
prior_options() - Deprecated functions
-
logit()invlogit() - Logit and inverse logit