Interface to the PPC (posterior predictive checking) module
in the bayesplot package, providing various plots comparing the
observed outcome variable \(y\) to simulated datasets \(y^{rep}\)
from the posterior predictive distribution. The pp_check
method for
stanreg-objects prepares the arguments required for the specified
bayesplot PPC plotting function and then calls that function. It is
also straightforward to use the functions from the bayesplot package
directly rather than via the pp_check
method. Examples of both are
given below.
# S3 method for stanreg pp_check(object, plotfun = "dens_overlay", nreps = NULL, seed = NULL, ...)
object | A fitted model object returned by one of the
rstanarm modeling functions. See |
---|---|
plotfun | A character string naming the bayesplot
PPC function to use. The default is to call
|
nreps | The number of \(y^{rep}\) datasets to generate from the
posterior predictive distribution and show in
the plots. The default depends on |
seed | An optional |
... | Additonal arguments passed to the bayesplot function
called. For many plotting functions |
pp_check
returns a ggplot object that can be further
customized using the ggplot2 package.
For binomial data, plots of \(y\) and \(y^{rep}\) show the
proportion of 'successes' rather than the raw count. Also for binomial
models see ppc_error_binned
for binned residual
plots.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian Data Analysis. Chapman & Hall/CRC Press, London, third edition. (Ch. 6)
Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and Gelman, A. (2019), Visualization in Bayesian workflow. J. R. Stat. Soc. A, 182: 389-402. doi:10.1111/rssa.12378, (journal version, arXiv preprint, code on GitHub)
The vignettes in the bayesplot package for many examples. Examples of posterior predictive checks can also be found in the rstanarm vignettes and demos.
PPC-overview
(bayesplot) for links to
the documentation for all the available plotting functions.
posterior_predict
for drawing from the posterior
predictive distribution.
color_scheme_set
to change the color scheme
of the plots.
fit <- stan_glmer( mpg ~ wt + am + (1|cyl), data = mtcars, iter = 400, # iter and chains small just to keep example quick chains = 2, refresh = 0 )#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable. #> Running the chains for more iterations may help. See #> http://mc-stan.org/misc/warnings.html#bulk-ess#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable. #> Running the chains for more iterations may help. See #> http://mc-stan.org/misc/warnings.html#tail-ess# Compare distribution of y to distributions of multiple yrep datasets pp_check(fit)pp_check(fit, plotfun = "boxplot", nreps = 10, notch = FALSE)pp_check(fit, plotfun = "hist", nreps = 3)#># \donttest{ # Same plot (up to RNG noise) using bayesplot package directly bayesplot::ppc_hist(y = mtcars$mpg, yrep = posterior_predict(fit, draws = 3))#># Check histograms of test statistics by level of grouping variable 'cyl' pp_check(fit, plotfun = "stat_grouped", stat = "median", group = "cyl")#># Defining a custom test statistic q25 <- function(y) quantile(y, probs = 0.25) pp_check(fit, plotfun = "stat_grouped", stat = "q25", group = "cyl")#> Error in get(as.character(FUN), mode = "function", envir = envir): object 'q25' of mode 'function' was not found# Scatterplot of y vs. average yrep pp_check(fit, plotfun = "scatter_avg") # y vs. average yrep# Same plot (up to RNG noise) using bayesplot package directly bayesplot::ppc_scatter_avg(y = mtcars$mpg, yrep = posterior_predict(fit))# Scatterplots of y vs. several individual yrep datasets pp_check(fit, plotfun = "scatter", nreps = 3)# Same plot (up to RNG noise) using bayesplot package directly bayesplot::ppc_scatter(y = mtcars$mpg, yrep = posterior_predict(fit, draws = 3))# yrep intervals with y points overlaid # by default 1:length(y) used on x-axis but can also specify an x variable pp_check(fit, plotfun = "intervals")#># Same plot (up to RNG noise) using bayesplot package directly bayesplot::ppc_intervals(y = mtcars$mpg, yrep = posterior_predict(fit), x = mtcars$wt) + ggplot2::xlab("wt")# predictive errors pp_check(fit, plotfun = "error_hist", nreps = 6)#># Example of a PPC for ordinal models (stan_polr) fit2 <- stan_polr(tobgp ~ agegp, data = esoph, method = "probit", prior = R2(0.2, "mean"), init_r = 0.1, refresh = 0) pp_check(fit2, plotfun = "bars", nreps = 500, prob = 0.5)pp_check(fit2, plotfun = "bars_grouped", group = esoph$agegp, nreps = 500, prob = 0.5)# }