Compare the empirical distribution of the data y
to the distributions of
simulated/replicated data yrep
from the posterior predictive distribution.
See the Plot Descriptions section, below, for details.
ppc_data(y, yrep, group = NULL)
ppc_dens_overlay(
y,
yrep,
...,
size = 0.25,
alpha = 0.7,
trim = FALSE,
bw = "nrd0",
adjust = 1,
kernel = "gaussian",
n_dens = 1024
)
ppc_dens_overlay_grouped(
y,
yrep,
group,
...,
size = 0.25,
alpha = 0.7,
trim = FALSE,
bw = "nrd0",
adjust = 1,
kernel = "gaussian",
n_dens = 1024
)
ppc_ecdf_overlay(
y,
yrep,
...,
discrete = FALSE,
pad = TRUE,
size = 0.25,
alpha = 0.7
)
ppc_ecdf_overlay_grouped(
y,
yrep,
group,
...,
discrete = FALSE,
pad = TRUE,
size = 0.25,
alpha = 0.7
)
ppc_dens(y, yrep, ..., trim = FALSE, size = 0.5, alpha = 1)
ppc_hist(
y,
yrep,
...,
binwidth = NULL,
bins = NULL,
breaks = NULL,
freq = TRUE
)
ppc_freqpoly(
y,
yrep,
...,
binwidth = NULL,
bins = NULL,
freq = TRUE,
size = 0.5,
alpha = 1
)
ppc_freqpoly_grouped(
y,
yrep,
group,
...,
binwidth = NULL,
bins = NULL,
freq = TRUE,
size = 0.5,
alpha = 1
)
ppc_boxplot(y, yrep, ..., notch = TRUE, size = 0.5, alpha = 1)
ppc_violin_grouped(
y,
yrep,
group,
...,
probs = c(0.1, 0.5, 0.9),
size = 1,
alpha = 1,
y_draw = c("violin", "points", "both"),
y_size = 1,
y_alpha = 1,
y_jitter = 0.1
)
ppc_pit_ecdf(
y,
yrep,
...,
pit = NULL,
K = NULL,
prob = 0.99,
plot_diff = FALSE,
interpolate_adj = NULL
)
ppc_pit_ecdf_grouped(
y,
yrep,
group,
...,
K = NULL,
pit = NULL,
prob = 0.99,
plot_diff = FALSE,
interpolate_adj = NULL
)
A vector of observations. See Details.
An S
by N
matrix of draws from the posterior (or prior)
predictive distribution. The number of rows, S
, is the size of the
posterior (or prior) sample used to generate yrep
. The number of columns,
N
is the number of predicted observations (length(y)
). The columns of
yrep
should be in the same order as the data points in y
for the plots
to make sense. See the Details and Plot Descriptions sections for
additional advice specific to particular plots.
A grouping variable of the same length as y
.
Will be coerced to factor if not already a factor.
Each value in group
is interpreted as the group level pertaining
to the corresponding observation.
Currently unused.
Passed to the appropriate geom to control the appearance of the predictive distributions.
A logical scalar passed to ggplot2::geom_density()
.
Optional arguments passed to
stats::density()
to override default kernel density estimation
parameters. n_dens
defaults to 1024
.
For ppc_ecdf_overlay()
, should the data be treated as
discrete? The default is FALSE
, in which case geom="line"
is
passed to ggplot2::stat_ecdf()
. If discrete
is set to
TRUE
then geom="step"
is used.
A logical scalar passed to ggplot2::stat_ecdf()
.
Passed to ggplot2::geom_histogram()
to override
the default binwidth.
Passed to ggplot2::geom_histogram()
to override
the default binwidth.
Passed to ggplot2::geom_histogram()
as an
alternative to binwidth
.
For histograms, freq=TRUE
(the default) puts count on the
y-axis. Setting freq=FALSE
puts density on the y-axis. (For many
plots the y-axis text is off by default. To view the count or density
labels on the y-axis see the yaxis_text()
convenience
function.)
For the box plot, a logical scalar passed to
ggplot2::geom_boxplot()
. Note: unlike geom_boxplot()
, the default is
notch=TRUE
.
A numeric vector passed to ggplot2::geom_violin()
's
draw_quantiles
argument to specify at which quantiles to draw
horizontal lines. Set to NULL
to remove the lines.
For ppc_violin_grouped()
, a string specifying how to draw
y
: "violin"
(default), "points"
(jittered points), or "both"
.
For ppc_violin_grouped()
, if y_draw
is
"points"
or "both"
then y_size
, y_alpha
, and y_jitter
are passed
to to the size
, alpha
, and width
arguments of ggplot2::geom_jitter()
to control the appearance of y
points. The default of y_jitter=NULL
will let ggplot2 determine the amount of jitter.
An optional vector of probability integral transformed values for
which the ECDF is to be drawn. If NULL, PIT values are computed to y
with
respect to the corresponding values in yrep
.
An optional integer defining the number of equally spaced evaluation
points for the ECDF. Reducing K when using interpolate_adj = FALSE
makes
computing the confidence bands faster. For ppc_pit_ecdf
and
ppc_pit_ecdf_grouped
, defaults to ncol(yrep) + 1
, or length(pit)
if PIT
values are supplied. For mcmc_rank_ecdf
defaults to the number of
iterations per chain in x
.
The desired simultaneous coverage level of the bands around the ECDF. A value in (0,1).
A boolean defining whether to plot the difference between
the observed ECDF and the theoretical expectation for uniform PIT values
rather than plotting the regular ECDF. The default is FALSE
, but for
large samples we recommend setting plot_diff=TRUE
as the difference plot
will visually show a more dynamic range.
A boolean defining if the simultaneous confidence
bands should be interpolated based on precomputed values rather than
computed exactly. Computing the bands may be computationally intensive and
the approximation gives a fast method for assessing the ECDF trajectory.
The default is to use interpolation if K
is greater than 200.
The plotting functions return a ggplot object that can be further
customized using the ggplot2 package. The functions with suffix
_data()
return the data that would have been drawn by the plotting
function.
For Binomial data, the plots may be more useful if the input contains the "success" proportions (not discrete "success" or "failure" counts).
ppc_hist(), ppc_freqpoly(), ppc_dens(), ppc_boxplot()
A separate histogram, shaded frequency polygon, smoothed kernel density
estimate, or box and whiskers plot is displayed for y
and each
dataset (row) in yrep
. For these plots yrep
should therefore
contain only a small number of rows. See the Examples section.
ppc_freqpoly_grouped()
A separate frequency polygon is plotted for each level of a grouping
variable for y
and each dataset (row) in yrep
. For this plot
yrep
should therefore contain only a small number of rows. See the
Examples section.
ppc_ecdf_overlay(), ppc_dens_overlay(), ppc_ecdf_overlay_grouped(), ppc_dens_overlay_grouped()
Kernel density or empirical CDF estimates of each dataset (row) in
yrep
are overlaid, with the distribution of y
itself on top
(and in a darker shade). When using ppc_ecdf_overlay()
with discrete
data, set the discrete
argument to TRUE
for better results.
For an example of ppc_dens_overlay()
also see Gabry et al. (2019).
ppc_violin_grouped()
The density estimate of yrep
within each level of a grouping
variable is plotted as a violin with horizontal lines at notable
quantiles. y
is overlaid on the plot either as a violin, points, or
both, depending on the y_draw
argument.
ppc_pit_ecdf()
, ppc_pit_ecdf_grouped()
The ECDF of the empirical PIT values of y
computed with respect to the
corresponding yrep
values. 100 * prob
% central simultaneous confidence
intervals are provided to asses if y
and yrep
originate from the same
distribution. The PIT values can also be provided directly as pit
.
See Säilynoja et al. (2021) for more details.
Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and Gelman, A. (2019), Visualization in Bayesian workflow. J. R. Stat. Soc. A, 182: 389-402. doi:10.1111/rssa.12378. (journal version, arXiv preprint, code on GitHub)
Säilynoja, T., Bürkner, P., Vehtari, A. (2021). Graphical Test for Discrete Uniformity and its Applications in Goodness of Fit Evaluation and Multiple Sample Comparison arXiv preprint.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian Data Analysis. Chapman & Hall/CRC Press, London, third edition. (Ch. 6)
Other PPCs:
PPC-censoring
,
PPC-discrete
,
PPC-errors
,
PPC-intervals
,
PPC-loo
,
PPC-overview
,
PPC-scatterplots
,
PPC-test-statistics
color_scheme_set("brightblue")
y <- example_y_data()
yrep <- example_yrep_draws()
group <- example_group_data()
dim(yrep)
#> [1] 500 434
ppc_dens_overlay(y, yrep[1:25, ])
# \donttest{
# ppc_ecdf_overlay with continuous data (set discrete=TRUE if discrete data)
ppc_ecdf_overlay(y, yrep[sample(nrow(yrep), 25), ])
# ECDF and ECDF difference plot of the PIT values of y compared to yrep
# with 99% simultaneous confidence bands.
ppc_pit_ecdf(y, yrep, prob = 0.99, plot_diff = FALSE)
ppc_pit_ecdf(y, yrep, prob = 0.99, plot_diff = TRUE)
# }
# for ppc_hist,dens,freqpoly,boxplot definitely use a subset yrep rows so
# only a few (instead of nrow(yrep)) histograms are plotted
ppc_hist(y, yrep[1:8, ])
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# \donttest{
color_scheme_set("red")
ppc_boxplot(y, yrep[1:8, ])
# wizard hat plot
color_scheme_set("blue")
ppc_dens(y, yrep[200:202, ])
# }
# \donttest{
# frequency polygons
ppc_freqpoly(y, yrep[1:3, ], alpha = 0.1, size = 1, binwidth = 5)
ppc_freqpoly_grouped(y, yrep[1:3, ], group) + yaxis_text()
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# if groups are different sizes then the 'freq' argument can be useful
ppc_freqpoly_grouped(y, yrep[1:3, ], group, freq = FALSE) + yaxis_text()
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# }
# density and distribution overlays by group
ppc_dens_overlay_grouped(y, yrep[1:25, ], group = group)
ppc_ecdf_overlay_grouped(y, yrep[1:25, ], group = group)
# \donttest{
# ECDF difference plots of the PIT values by group
# with 99% simultaneous confidence bands.
ppc_pit_ecdf_grouped(y, yrep, group=group, prob=0.99, plot_diff = TRUE)
# }
# \donttest{
# don't need to only use small number of rows for ppc_violin_grouped
# (as it pools yrep draws within groups)
color_scheme_set("gray")
ppc_violin_grouped(y, yrep, group, size = 1.5)
ppc_violin_grouped(y, yrep, group, alpha = 0)
# change how y is drawn
ppc_violin_grouped(y, yrep, group, alpha = 0, y_draw = "points", y_size = 1.5)
ppc_violin_grouped(y, yrep, group,
alpha = 0, y_draw = "both",
y_size = 1.5, y_alpha = 0.5, y_jitter = 0.33
)
# }