The distribution of a (test) statistic T(yrep)
, or a pair of (test)
statistics, over the simulated datasets in yrep
, compared to the
observed value T(y)
computed from the data y
. See the
Plot Descriptions and Details sections, below, as
well as Gabry et al. (2019).
ppc_stat(
y,
yrep,
stat = "mean",
...,
binwidth = NULL,
bins = NULL,
breaks = NULL,
freq = TRUE
)
ppc_stat_grouped(
y,
yrep,
group,
stat = "mean",
...,
facet_args = list(),
binwidth = NULL,
bins = NULL,
breaks = NULL,
freq = TRUE
)
ppc_stat_freqpoly(
y,
yrep,
stat = "mean",
...,
facet_args = list(),
binwidth = NULL,
bins = NULL,
freq = TRUE
)
ppc_stat_freqpoly_grouped(
y,
yrep,
group,
stat = "mean",
...,
facet_args = list(),
binwidth = NULL,
bins = NULL,
freq = TRUE
)
ppc_stat_2d(y, yrep, stat = c("mean", "sd"), ..., size = 2.5, alpha = 0.7)
ppc_stat_data(y, yrep, group = NULL, stat)
A vector of observations. See Details.
An S
by N
matrix of draws from the posterior (or prior)
predictive distribution. The number of rows, S
, is the size of the
posterior (or prior) sample used to generate yrep
. The number of columns,
N
is the number of predicted observations (length(y)
). The columns of
yrep
should be in the same order as the data points in y
for the plots
to make sense. See the Details and Plot Descriptions sections for
additional advice specific to particular plots.
A single function or a string naming a function, except for the 2D plot which requires a vector of exactly two names or functions. In all cases the function(s) should take a vector input and return a scalar statistic. If specified as a string (or strings) then the legend will display the function name(s). If specified as a function (or functions) then generic naming is used in the legend.
Currently unused.
Passed to ggplot2::geom_histogram()
to override
the default binwidth.
Passed to ggplot2::geom_histogram()
to override
the default binwidth.
Passed to ggplot2::geom_histogram()
as an
alternative to binwidth
.
For histograms, freq=TRUE
(the default) puts count on the
y-axis. Setting freq=FALSE
puts density on the y-axis. (For many
plots the y-axis text is off by default. To view the count or density
labels on the y-axis see the yaxis_text()
convenience
function.)
A grouping variable of the same length as y
.
Will be coerced to factor if not already a factor.
Each value in group
is interpreted as the group level pertaining
to the corresponding observation.
A named list of arguments (other than facets
) passed
to ggplot2::facet_wrap()
or ggplot2::facet_grid()
to control faceting. Note: if scales
is not included in facet_args
then bayesplot may use scales="free"
as the default (depending
on the plot) instead of the ggplot2 default of scales="fixed"
.
For the 2D plot only, arguments passed to
ggplot2::geom_point()
to control the appearance of scatterplot points.
The plotting functions return a ggplot object that can be further
customized using the ggplot2 package. The functions with suffix
_data()
return the data that would have been drawn by the plotting
function.
For Binomial data, the plots may be more useful if the input contains the "success" proportions (not discrete "success" or "failure" counts).
ppc_stat()
, ppc_stat_freqpoly()
A histogram or frequency polygon of the distribution of a statistic
computed by applying stat
to each dataset (row) in yrep
. The value of
the statistic in the observed data, stat(y)
, is overlaid as a vertical
line. More details and example usage of ppc_stat()
can be found in Gabry
et al. (2019).
ppc_stat_grouped()
,ppc_stat_freqpoly_grouped()
The same as ppc_stat()
and ppc_stat_freqpoly()
, but a separate plot is
generated for each level of a grouping variable. More details and example
usage of ppc_stat_grouped()
can be found in Gabry et al. (2019).
ppc_stat_2d()
A scatterplot showing the joint distribution of two statistics
computed over the datasets (rows) in yrep
. The value of the
statistics in the observed data is overlaid as large point.
Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and Gelman, A. (2019), Visualization in Bayesian workflow. J. R. Stat. Soc. A, 182: 389-402. doi:10.1111/rssa.12378. (journal version, arXiv preprint, code on GitHub)
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian Data Analysis. Chapman & Hall/CRC Press, London, third edition. (Ch. 6)
Other PPCs:
PPC-censoring
,
PPC-discrete
,
PPC-distributions
,
PPC-errors
,
PPC-intervals
,
PPC-loo
,
PPC-overview
,
PPC-scatterplots
y <- example_y_data()
yrep <- example_yrep_draws()
ppc_stat(y, yrep)
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ppc_stat(y, yrep, stat = "sd") + legend_none()
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# use your own function for the 'stat' argument
color_scheme_set("brightblue")
q25 <- function(y) quantile(y, 0.25)
ppc_stat(y, yrep, stat = "q25") # legend includes function name
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# can define the function in the 'stat' argument instead of
# using its name but then the legend doesn't include the function name
ppc_stat(y, yrep, stat = function(y) quantile(y, 0.25))
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# plots by group
color_scheme_set("teal")
group <- example_group_data()
ppc_stat_grouped(y, yrep, group)
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ppc_stat_grouped(y, yrep, group) + yaxis_text()
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# force y-axes to have same scales, allow x axis to vary
ppc_stat_grouped(y, yrep, group, facet_args = list(scales = "free_x")) + yaxis_text()
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# the freqpoly plots use frequency polygons instead of histograms
ppc_stat_freqpoly(y, yrep, stat = "median")
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ppc_stat_freqpoly_grouped(y, yrep, group, stat = "median", facet_args = list(nrow = 2))
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# ppc_stat_2d allows 2 statistics and makes a scatterplot
bayesplot_theme_set(ggplot2::theme_linedraw())
color_scheme_set("viridisE")
ppc_stat_2d(y, yrep, stat = c("mean", "sd"))
bayesplot_theme_set(ggplot2::theme_grey())
color_scheme_set("brewer-Paired")
ppc_stat_2d(y, yrep, stat = c("median", "mad"))
# reset aesthetics
color_scheme_set()
bayesplot_theme_set()