Compare the empirical distribution of censored data y
to the
distributions of simulated/replicated data yrep
from the posterior
predictive distribution. See the Plot Descriptions section, below, for
details.
Although some of the other bayesplot plots can be used with censored
data, ppc_km_overlay()
is currently the only plotting function designed
specifically for censored data. We encourage you to suggest or contribute
additional plots at
github.com/stan-dev/bayesplot.
ppc_km_overlay(
y,
yrep,
...,
status_y,
left_truncation_y = NULL,
extrapolation_factor = 1.2,
size = 0.25,
alpha = 0.7
)
ppc_km_overlay_grouped(
y,
yrep,
group,
...,
status_y,
left_truncation_y = NULL,
extrapolation_factor = 1.2,
size = 0.25,
alpha = 0.7
)
A vector of observations. See Details.
An S
by N
matrix of draws from the posterior (or prior)
predictive distribution. The number of rows, S
, is the size of the
posterior (or prior) sample used to generate yrep
. The number of columns,
N
is the number of predicted observations (length(y)
). The columns of
yrep
should be in the same order as the data points in y
for the plots
to make sense. See the Details and Plot Descriptions sections for
additional advice specific to particular plots.
Currently only used internally.
The status indicator for the observations from y
. This must
be a numeric vector of the same length as y
with values in {0, 1} (0 =
right censored, 1 = event).
Optional parameter that specifies left-truncation
(delayed entry) times for the observations from y
. This must be a numeric
vector of the same length as y
. If NULL
(default), no left-truncation
is assumed.
A numeric value (>=1) that controls how far the
plot is extended beyond the largest observed value in y
. The default
value is 1.2, which corresponds to 20 % extrapolation. Note that all
posterior predictive draws may not be shown by default because of the
controlled extrapolation. To display all posterior predictive draws, set
extrapolation_factor = Inf
.
Passed to the appropriate geom to control the appearance of
the yrep
distributions.
A grouping variable of the same length as y
.
Will be coerced to factor if not already a factor.
Each value in group
is interpreted as the group level pertaining
to the corresponding observation.
A ggplot object that can be further customized using the ggplot2 package.
ppc_km_overlay()
Empirical CCDF estimates of each dataset (row) in yrep
are overlaid, with
the Kaplan-Meier estimate (Kaplan and Meier, 1958) for y
itself on top
(and in a darker shade). This is a PPC suitable for right-censored y
.
Note that the replicated data from yrep
is assumed to be uncensored. Left
truncation (delayed entry) times for y
can be specified using
left_truncation_y
.
ppc_km_overlay_grouped()
The same as ppc_km_overlay()
, but with separate facets by group
.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian Data Analysis. Chapman & Hall/CRC Press, London, third edition. (Ch. 6)
Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association. 53(282), 457--481. doi:10.1080/01621459.1958.10501452.
# \donttest{
color_scheme_set("brightblue")
# For illustrative purposes, (right-)censor values y > 110:
y <- example_y_data()
status_y <- as.numeric(y <= 110)
y <- pmin(y, 110)
# In reality, the replicated data (yrep) would be obtained from a
# model which takes the censoring of y properly into account. Here,
# for illustrative purposes, we simply use example_yrep_draws():
yrep <- example_yrep_draws()
dim(yrep)
#> [1] 500 434
# Overlay 25 curves
ppc_km_overlay(y, yrep[1:25, ], status_y = status_y)
#> Note: `extrapolation_factor` now defaults to 1.2 (20%).
#> To display all posterior predictive draws, set `extrapolation_factor = Inf`.
# With extrapolation_factor = 1 (no extrapolation)
ppc_km_overlay(y, yrep[1:25, ], status_y = status_y, extrapolation_factor = 1)
# With extrapolation_factor = Inf (show all posterior predictive draws)
ppc_km_overlay(y, yrep[1:25, ], status_y = status_y, extrapolation_factor = Inf)
# With separate facets by group:
group <- example_group_data()
ppc_km_overlay_grouped(y, yrep[1:25, ], group = group, status_y = status_y)
#> Note: `extrapolation_factor` now defaults to 1.2 (20%).
#> To display all posterior predictive draws, set `extrapolation_factor = Inf`.
# With left-truncation (delayed entry) times:
min_vals <- pmin(y, apply(yrep, 2, min))
left_truncation_y <- rep(0, length(y))
condition <- y > mean(y) / 2
left_truncation_y[condition] <- pmin(
runif(sum(condition), min = 0.6, max = 0.99) * y[condition],
min_vals[condition] - 0.001
)
ppc_km_overlay(y, yrep[1:25, ], status_y = status_y,
left_truncation_y = left_truncation_y)
#> Note: `extrapolation_factor` now defaults to 1.2 (20%).
#> To display all posterior predictive draws, set `extrapolation_factor = Inf`.
# }