Skip to contents

All functions

as.matrix(<projection>)
Extract projected parameter draws and coerce to matrix
as_draws_matrix(<projection>) as_draws(<projection>)
Extract projected parameter draws and coerce to draws_matrix (see package posterior)
augdat_ilink_binom()
Inverse-link function for augmented-data projection with binomial family
augdat_link_binom()
Link function for augmented-data projection with binomial family
break_up_matrix_term()
Break up matrix terms
cl_agg()
Weighted averaging within clusters of parameter draws
cv_folds() cvfolds() cv_ids()
Create cross-validation folds
cv_proportions()
Ranking proportions from fold-wise predictor rankings
cv_varsel()
Run search and performance evaluation with cross-validation
df_binom
Binomial toy example
df_gaussian
Gaussian toy example
extend_family()
Extend a family
Student_t()
Extra family objects
force_search_terms()
Force search terms
mesquite
Mesquite data set
performances()
Predictive performance results
plot(<cv_proportions>) plot(<ranking>)
Plot ranking proportions from fold-wise predictor rankings
plot(<vsel>)
Plot predictive performance
proj_linpred() proj_predict()
Predictions from a submodel (after projection)
predict(<refmodel>)
Predictions or log posterior predictive densities from a reference model
predictor_terms()
Predictor terms used in a project() run
print(<projection>)
Print information about project() output
print(<refmodel>)
Print information about a reference model object
print(<vsel>)
Print results (summary) of a varsel() or cv_varsel() run
print(<vselsummary>)
Print summary of a varsel() or cv_varsel() run
project()
Projection onto submodel(s)
projpred projpred-package
Projection predictive feature selection
ranking()
Predictor ranking(s)
get_refmodel() init_refmodel()
Reference model and more general information
run_cvfun()
Create cvfits from cvfun
solution_terms()
Retrieve the full-data solution path from a varsel() or cv_varsel() run or the predictor combination from a project() run
suggest_size()
Suggest submodel size
summary(<vsel>)
Summary of a varsel() or cv_varsel() run
varsel()
Run search and performance evaluation without cross-validation
y_wobs_offs()
Extract response values, observation weights, and offsets