All functions

as.matrix(<projection>)

Extract projected parameter draws and coerce to matrix

as_draws_matrix(<projection>) as_draws(<projection>)

Extract projected parameter draws and coerce to draws_matrix (see package posterior)

augdat_ilink_binom()

Inverse-link function for augmented-data projection with binomial family

augdat_link_binom()

Link function for augmented-data projection with binomial family

break_up_matrix_term()

Break up matrix terms

cl_agg()

Weighted averaging within clusters of parameter draws

cv_folds() cvfolds() cv_ids()

Create cross-validation folds

cv_proportions()

Ranking proportions from fold-wise predictor rankings

cv_varsel()

Run search and performance evaluation with cross-validation

df_binom

Binomial toy example

df_gaussian

Gaussian toy example

extend_family()

Extend a family

Student_t()

Extra family objects

force_search_terms()

Force search terms

mesquite

Mesquite data set

performances()

Predictive performance results

plot(<cv_proportions>) plot(<ranking>)

Plot ranking proportions from fold-wise predictor rankings

plot(<vsel>)

Plot predictive performance

proj_linpred() proj_predict()

Predictions from a submodel (after projection)

predict(<refmodel>)

Predictions or log posterior predictive densities from a reference model

predictor_terms()

Predictor terms used in a project() run

print(<projection>)

Print information about project() output

print(<refmodel>)

Print information about a reference model object

print(<vsel>)

Print results (summary) of a varsel() or cv_varsel() run

print(<vselsummary>)

Print summary of a varsel() or cv_varsel() run

project()

Projection onto submodel(s)

projpred projpred-package

Projection predictive feature selection

ranking()

Predictor ranking(s)

get_refmodel() init_refmodel()

Reference model and more general information

run_cvfun()

Create cvfits from cvfun

solution_terms()

Retrieve the full-data solution path from a varsel() or cv_varsel() run or the predictor combination from a project() run

suggest_size()

Suggest submodel size

summary(<vsel>)

Summary of a varsel() or cv_varsel() run

varsel()

Run search and performance evaluation without cross-validation

y_wobs_offs()

Extract response values, observation weights, and offsets