Package index
-
as.matrix(<projection>) - Extract projected parameter draws and coerce to matrix
-
as_draws_matrix(<projection>)as_draws(<projection>) - Extract projected parameter draws and coerce to
draws_matrix(see package posterior)
-
augdat_ilink_binom() - Inverse-link function for augmented-data projection with binomial family
-
augdat_link_binom() - Link function for augmented-data projection with binomial family
-
break_up_matrix_term() - Break up matrix terms
-
cl_agg() - Weighted averaging within clusters of parameter draws
-
cv_folds()cvfolds()cv_ids() - Create cross-validation folds
-
cv_proportions() - Ranking proportions from fold-wise predictor rankings
-
cv_varsel() - Run search and performance evaluation with cross-validation
-
df_binom - Binomial toy example
-
df_gaussian - Gaussian toy example
-
extend_family() - Extend a family
-
Student_t() - Extra family objects
-
force_search_terms() - Force search terms
-
mesquite - Mesquite data set
-
performances() - Predictive performance results
-
plot(<cv_proportions>)plot(<ranking>) - Plot ranking proportions from fold-wise predictor rankings
-
plot(<vsel>) - Plot predictive performance
-
proj_linpred()proj_predict() - Predictions from a submodel (after projection)
-
predict(<refmodel>) - Predictions or log posterior predictive densities from a reference model
-
predictor_terms() - Predictor terms used in a
project()run
-
print(<projection>) - Print information about
project()output
-
print(<refmodel>) - Print information about a reference model object
-
print(<vsel>) - Print results (summary) of a
varsel()orcv_varsel()run
-
print(<vselsummary>) - Print summary of a
varsel()orcv_varsel()run
-
project() - Projection onto submodel(s)
-
projpredprojpred-package - Projection predictive feature selection
-
ranking() - Predictor ranking(s)
-
get_refmodel()init_refmodel() - Reference model and more general information
-
run_cvfun() - Create
cvfitsfromcvfun
-
solution_terms() - Retrieve the full-data solution path from a
varsel()orcv_varsel()run or the predictor combination from aproject()run
-
suggest_size() - Suggest submodel size
-
summary(<vsel>) - Summary of a
varsel()orcv_varsel()run
-
varsel() - Run search and performance evaluation without cross-validation
-
y_wobs_offs() - Extract response values, observation weights, and offsets