All functions

As.mcmc.list()

Create an mcmc.list from a stanfit object

Rhat() ess_bulk() ess_tail()

Convergence and efficiency diagnostics for Markov Chains

check_hmc_diagnostics() check_divergences() check_treedepth() check_energy() get_divergent_iterations() get_max_treedepth_iterations() get_num_leapfrog_per_iteration() get_num_divergent() get_num_max_treedepth() get_bfmi() get_low_bfmi_chains()

Check HMC diagnostics after sampling

expose_stan_functions() get_rng() get_stream()

Expose user-defined Stan functions to R for testing and simulation

extract_sparse_parts()

Extract the compressed representation of a sparse matrix

lookup()

Look up the Stan function that corresponds to a R function or name.

makeconf_path()

Obtain the full path of file Makeconf

monitor() print(<simsummary>) `[`(<simsummary>)

Compute summaries of MCMC draws and monitor convergence

nlist()

Created named lists

rstan-plotting-functions

RStan Plotting Functions

print(<stanfit>)

Print a summary for a fitted model represented by a stanfit object

read_rdump()

Read data in an R dump file to a list

rstan-package rstan

RStan --- the R interface to Stan

rstan.package.skeleton

Create a Skeleton for a New Source Package with Stan Programs

rstan_options()

Set and read options used in RStan

sbc() plot(<sbc>) print(<sbc>)

Simulation Based Calibration (sbc)

set_cppo()

Defunct function to set the compiler optimization level

sflist2stanfit()

Merge a list of stanfit objects into one

stan()

Fit a model with Stan

read_stan_csv()

Read CSV files of samples generated by (R)Stan into a stanfit object

stan_demo()

Demonstrate examples included in Stan

stan_model()

Construct a Stan model

stan_plot() stan_trace() stan_scat() stan_hist() stan_dens() stan_ac() quietgg()

ggplot2 for RStan

stan_diag() stan_par() stan_rhat() stan_ess() stan_mcse()

RStan Diagnostic plots

rstan_gg_options() rstan_ggtheme_options()

Set default appearance options

stan_rdump()

Dump the data for a Stan model to R dump file in the limited format that Stan can read.

stan_version()

Obtain the version of Stan

stanc() stanc_builder()

Translate Stan model specification to C++ code

stanfit-class stanfit show,stanfit-method get_cppo_mode get_cppo_mode,stanfit-method get_stancode get_stancode,stanfit-method get_stanmodel get_stanmodel,stanfit-method get_seed get_seed,stanfit-method get_seeds get_seeds,stanfit-method get_inits get_inits,stanfit-method get_posterior_mean get_posterior_mean,stanfit-method get_elapsed_time get_elapsed_time,stanfit-method get_logposterior get_logposterior,stanfit-method get_adaptation_info get_adaptation_info,stanfit-method get_sampler_params get_sampler_params,stanfit,logical-method

Class stanfit: fitted Stan model

extract(<stanfit>)

Extract samples from a fitted Stan model

log_prob(<stanfit>) grad_log_prob(<stanfit>) get_num_upars(<stanfit>) constrain_pars(<stanfit>) unconstrain_pars(<stanfit>)

log_prob and grad_log_prob functions

loo_moment_match(<stanfit>)

Moment matching for efficient approximate leave-one-out cross-validation (LOO)

loo(<stanfit>)

Approximate leave-one-out cross-validation

pairs(<stanfit>)

Create a matrix of output plots from a stanfit object

plot(<stanfit>,<missing>)

Plots for stanfit objects

summary(<stanfit>)

Summary method for stanfit objects

traceplot(<stanfit>)

Markov chain traceplots

as.array(<stanfit>) as.matrix(<stanfit>) as.data.frame(<stanfit>) is.array(<stanfit>) dim(<stanfit>) dimnames(<stanfit>) names(<stanfit>) `names<-`(<stanfit>)

Create array, matrix, or data.frame objects from samples in a stanfit object

stanmodel-class get_cppcode get_cxxflags get_cppcode,stanmodel-method get_cxxflags,stanmodel-method get_stancode,stanmodel-method show,stanmodel-method

Class representing model compiled from C++

gqs(<stanmodel>)

Draw samples of generated quantities from a Stan model

optimizing(<stanmodel>)

Obtain a point estimate by maximizing the joint posterior

sampling(<stanmodel>)

Draw samples from a Stan model

vb(<stanmodel>)

Run Stan's variational algorithm for approximate posterior sampling