Skip to contents

These functions print summaries of important HMC diagnostics or extract those diagnostics from a stanfit object. See the Details section, below.

Usage

check_hmc_diagnostics(object)
check_divergences(object)
check_treedepth(object)
check_energy(object)

get_divergent_iterations(object)
get_max_treedepth_iterations(object)
get_num_leapfrog_per_iteration(object)

get_num_divergent(object)
get_num_max_treedepth(object)

get_bfmi(object)
get_low_bfmi_chains(object)

Arguments

object

A stanfit object.

Details

The check_hmc_diagnostics function calls the other check_* functions internally and prints an overall summary, but the other functions can also be called directly:

  • check_divergences prints the number (and percentage) of iterations that ended with a divergence,

  • check_treedepth prints the number (and percentage) of iterations that saturated the max treedepth,

  • check_energy prints E-BFMI values for each chain for which E-BFMI is less than 0.2.

The get_* functions are for programmatic access to the diagnostics.

  • get_divergent_iterations and get_max_treedepth_iterations return a logical vector indicating problems for individual iterations,

  • get_num_divergent and get_num_max_treedepth return the number of offending interations,

  • get_num_leapfrog_per_iteration returns an integer vector with the number of leapfrog evalutions for each iteration,

  • get_bfmi returns per-chain E-BFMI values and get_low_bfmi_chains returns the indices of chains with low E-BFMI.

The following are several of many resources that provide more information on these diagnostics:

  • Brief explanations of some of the problems detected by these diagnostics can be found in the Brief Guide to Stan's Warnings.

  • Betancourt (2017) provides much more depth on these diagnostics as well as a conceptual introduction to Hamiltonian Monte Carlo in general.

  • Gabry et al. (2018) and the bayesplot package vignettes demonstrate various visualizations of these diagnostics that can be made in R.

References

The Stan Development Team Stan Modeling Language User's Guide and Reference Manual. https://mc-stan.org/.

Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. https://arxiv.org/abs/1701.02434.

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., and Gelman, A. (2018). Visualization in Bayesian workflow. Journal of the Royal Statistical Society Series A, accepted for publication. arXiv preprint: https://arxiv.org/abs/1709.01449.

Examples

# \dontrun{
schools <- stan_demo("eight_schools")
#> 
#> > J <- 8
#> 
#> > y <- c(28, 8, -3, 7, -1, 1, 18, 12)
#> 
#> > sigma <- c(15, 10, 16, 11, 9, 11, 10, 18)
#> 
#> > tau <- 25
#> 
#> SAMPLING FOR MODEL 'eight_schools' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 7e-06 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 0.04 seconds (Warm-up)
#> Chain 1:                0.02 seconds (Sampling)
#> Chain 1:                0.06 seconds (Total)
#> Chain 1: 
#> 
#> SAMPLING FOR MODEL 'eight_schools' NOW (CHAIN 2).
#> Chain 2: 
#> Chain 2: Gradient evaluation took 3e-06 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2: 
#> Chain 2: 
#> Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 2: 
#> Chain 2:  Elapsed Time: 0.037 seconds (Warm-up)
#> Chain 2:                0.016 seconds (Sampling)
#> Chain 2:                0.053 seconds (Total)
#> Chain 2: 
#> 
#> SAMPLING FOR MODEL 'eight_schools' NOW (CHAIN 3).
#> Chain 3: 
#> Chain 3: Gradient evaluation took 3e-06 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3: 
#> Chain 3: 
#> Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 3: 
#> Chain 3:  Elapsed Time: 0.038 seconds (Warm-up)
#> Chain 3:                0.023 seconds (Sampling)
#> Chain 3:                0.061 seconds (Total)
#> Chain 3: 
#> 
#> SAMPLING FOR MODEL 'eight_schools' NOW (CHAIN 4).
#> Chain 4: 
#> Chain 4: Gradient evaluation took 3e-06 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4: 
#> Chain 4: 
#> Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 4: 
#> Chain 4:  Elapsed Time: 0.049 seconds (Warm-up)
#> Chain 4:                0.027 seconds (Sampling)
#> Chain 4:                0.076 seconds (Total)
#> Chain 4: 
#> Warning: There were 50 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: Examine the pairs() plot to diagnose sampling problems
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
check_hmc_diagnostics(schools)
#> 
#> Divergences:
#> 50 of 4000 iterations ended with a divergence (1.25%).
#> Try increasing 'adapt_delta' to remove the divergences.
#> 
#> Tree depth:
#> 0 of 4000 iterations saturated the maximum tree depth of 10.
#> 
#> Energy:
#> E-BFMI indicated no pathological behavior.
check_divergences(schools)
#> 50 of 4000 iterations ended with a divergence (1.25%).
#> Try increasing 'adapt_delta' to remove the divergences.
check_treedepth(schools)
#> 0 of 4000 iterations saturated the maximum tree depth of 10.
check_energy(schools)
#> E-BFMI indicated no pathological behavior.
# }