Stan Math Library
5.0.0
Automatic Differentiation
|
A comparator that works for any container type that has the brackets operator.
Returns the natural logarithm of the difference of the inverse logits of the specified arguments and its gradients.
ascending | true if sorting in ascending order |
C | container type |
\[ \mathrm{log\_inv\_logit\_diff}(x,y) = \ln\left(\frac{1}{1+\exp(-x)}-\frac{1}{1+\exp(-y)}\right) \]
\[ \frac{\partial }{\partial x} = -\frac{e^x}{e^y-e^x}-\frac{e^x}{e^x+1} \]
\[ \frac{\partial }{\partial x} = -\frac{e^y}{e^x-e^y}-\frac{e^y}{e^y+1} \]
T1 | Type of x argument |
T2 | Type of y argument |
a | Argument |
b | Argument |
Typedefs | |
template<typename T > | |
using | is_scalar_check = is_scalar_check_impl< std::decay_t< T > > |
using | VectorXdd = Eigen::Matrix< double_d, -1, 1 > |
using | MatrixXdd = Eigen::Matrix< double_d, -1, -1 > |
template<typename T > | |
using | require_matrix_var_value = require_t< bool_constant<(is_eigen< T >::value||is_kernel_expression_and_not_scalar< T >::value) &&std::is_floating_point< value_type_t< T > >::value > > |
Enumerations | |
enum | GradientCalc { OFF = 0 , ON = 1 } |
Functions | |
template<typename FuncTangent , typename InputArg , require_not_st_fvar< InputArg > * = nullptr> | |
constexpr double | aggregate_tangent (const FuncTangent &tangent, const InputArg &arg) |
Helper function for aggregating tangents if the respective input argument was an fvar<T> type. | |
template<typename FuncTangent , typename InputArg , require_st_fvar< InputArg > * = nullptr> | |
auto | aggregate_tangent (const FuncTangent &tangent, const InputArg &arg) |
Helper function for aggregating tangents if the respective input argument was an fvar<T> type. | |
static constexpr auto | sum_dx () |
End of recursion for summing .dx() for fvar<T> ops and partials. | |
template<typename T1 > | |
auto | sum_dx (T1 &a) |
End of recursion for summing .dx() for fvar<T> ops and partials. | |
template<typename T1 , typename T2 , typename... Types> | |
auto | sum_dx (T1 &a, T2 &b, Types &... args) |
Accumulate the .dx() from each of the edges in ops_and_partials_impl . | |
char * | eight_byte_aligned_malloc (size_t size) |
double_d | mul_d_d (double a, double b) |
double_d | neg (double_d a) |
double_d | add_dd_dd (double_d a, double_d b) |
double_d | add_dd_d (double_d a, double b) |
double_d | sub_dd_dd (double_d a, double_d b) |
double_d | sub_dd_d (double_d a, double b) |
double_d | sub_d_dd (double a, double_d b) |
double_d | mul_dd_dd (double_d a, double_d b) |
double_d | mul_dd_d (double_d a, double b) |
double_d | div_dd_dd (double_d a, double_d b) |
double_d | div_dd_d (double_d a, double b) |
double_d | div_d_dd (double a, double_d b) |
double | copysign_d_dd (double a, double_d b) |
double_d | abs_dd (double_d a) |
bool | isnan_dd (double_d a) |
bool | isinf_dd (double_d a) |
bool | lt_dd_dd (double_d a, double_d b) |
bool | lt_d_dd (double a, double_d b) |
bool | lt_dd_d (double_d a, double b) |
bool | gt_dd_dd (double_d a, double_d b) |
bool | gt_d_dd (double a, double_d b) |
bool | gt_dd_d (double_d a, double b) |
bool | le_dd_dd (double_d a, double_d b) |
bool | le_d_dd (double a, double_d b) |
bool | le_dd_d (double_d a, double b) |
bool | ge_dd_dd (double_d a, double_d b) |
bool | ge_d_dd (double a, double_d b) |
bool | ge_dd_d (double_d a, double b) |
double_d | operator+ (double_d a, double b) |
double_d | operator+ (double a, double_d b) |
double_d | operator+ (double_d a, double_d b) |
double_d | operator- (double a, double_d b) |
double_d | operator- (double_d a, double b) |
double_d | operator- (double_d a, double_d b) |
double_d | operator* (double_d a, double b) |
double_d | operator* (double a, double_d b) |
double_d | operator* (double_d a, double_d b) |
double_d | operator/ (double_d a, double b) |
double_d | operator/ (double a, double_d b) |
double_d | operator/ (double_d a, double_d b) |
double_d | operator- (double_d a) |
bool | operator< (double_d a, double_d b) |
bool | operator< (double a, double_d b) |
bool | operator< (double_d a, double b) |
bool | operator> (double_d a, double_d b) |
bool | operator> (double a, double_d b) |
bool | operator> (double_d a, double b) |
bool | operator<= (double_d a, double_d b) |
bool | operator<= (double a, double_d b) |
bool | operator<= (double_d a, double b) |
bool | operator>= (double_d a, double_d b) |
bool | operator>= (double a, double_d b) |
bool | operator>= (double_d a, double b) |
double_d | fabs (double_d a) |
bool | isnan (double_d a) |
bool | isinf (double_d a) |
double | copysign (double a, double_d b) |
int | colwise_reduction_wgs_rows (int n_rows, int n_cols) |
Determine number of work groups in rows direction that will be run fro colwise reduction of given size. | |
template<typename T , std::size_t... Is, typename... Args> | |
auto | make_holder_cl_impl_step2 (T &&expr, std::index_sequence< Is... >, const std::tuple< Args *... > &ptrs) |
Second step in implementation of construction holder_cl from a functor. | |
template<typename T , std::size_t... Is, typename... Args> | |
auto | make_holder_cl_impl_step1 (const T &func, std::index_sequence< Is... >, Args &&... args) |
First step in implementation of construction holder_cl from a functor. | |
double_d | get_random_perturbation_multiplier () |
Generates a random number for perturbing a relatively robust representation. | |
void | get_gresgorin (const Eigen::Ref< const Eigen::VectorXd > diagonal, const Eigen::Ref< const Eigen::VectorXd > subdiagonal, double &min_eigval, double &max_eigval) |
Calculates bounds on eigenvalues of a symmetric tridiagonal matrix T using Gresgorin discs. | |
double | max_nan (double a, double b) |
NaN-favouring max. | |
double | get_ldl (const Eigen::Ref< const Eigen::VectorXd > diagonal, const Eigen::Ref< const Eigen::VectorXd > subdiagonal, const double shift, VectorXdd &l, VectorXdd &d_plus) |
Calculates LDL decomposition of a shifted triagonal matrix T. | |
double | find_initial_shift (const Eigen::Ref< const Eigen::VectorXd > diagonal, const Eigen::Ref< const Eigen::VectorXd > subdiagonal, VectorXdd &l0, VectorXdd &d0, const double min_eigval, const double max_eigval, const double max_ele_growth) |
Finds a good value for shift of the initial LDL factorization T - shift * I = L * D * L^T. | |
int | get_sturm_count_ldl (const VectorXdd &l, const VectorXdd &d, const double_d shift) |
Calculates Sturm count of a LDL decomposition of a tridiagonal matrix - number of eigenvalues larger or equal to shift. | |
void | eigenval_bisect_refine (const VectorXdd &l, const VectorXdd &d, double_d &low, double_d &high, const int i) |
Refines bounds on the i-th largest eigenvalue of LDL decomposition using bisection. | |
double | get_shifted_ldl (const VectorXdd &l, const VectorXdd &d, const double_d shift, VectorXdd &l_plus, VectorXdd &d_plus) |
Shifts a LDL decomposition. | |
void | find_shift (const VectorXdd &l, const VectorXdd &d, const double_d low, const double_d high, const double max_ele_growth, const double_d max_shift, VectorXdd &l2, VectorXdd &d2, double_d &shift, double &min_element_growth) |
Finds good shift and shifts a LDL decomposition so as to keep element growth low. | |
template<bool need_eigenvectors = true> | |
void | mrrr_cl (const Eigen::Ref< const Eigen::VectorXd > diagonal, const Eigen::Ref< const Eigen::VectorXd > subdiagonal, Eigen::Ref< Eigen::VectorXd > eigenvalues, Eigen::Ref< Eigen::MatrixXd > eigenvectors, const double min_rel_sep=1e-4, const double maximum_ele_growth=15) |
Calculates eigenvalues and eigenvectors of a irreducible tridiagonal matrix T using multiple relatively robust representations (MRRR) algorithm. | |
template<bool need_eigenvectors = true> | |
void | tridiagonal_eigensolver_cl (const matrix_cl< double > &diagonal_cl, const matrix_cl< double > &subdiagonal_cl, matrix_cl< double > &eigenvalues_cl, matrix_cl< double > &eigenvectors_cl, const double split_threshold=1e-15) |
Calculates eigenvalues and eigenvectors of a tridiagonal matrix T using MRRR algorithm. | |
void | block_householder_tridiag_cl (const matrix_cl< double > &A, matrix_cl< double > &packed, const int r=60) |
Tridiagonalize a symmetric matrix using block Housholder algorithm. | |
void | block_apply_packed_Q_cl (const matrix_cl< double > &packed_cl, matrix_cl< double > &A, const int r=200) |
Calculates Q*A in-place. | |
int | get_num_threads () |
Get number of threads to use. | |
template<typename U , typename V > | |
complex_return_t< U, V > | complex_add (const U &lhs, const V &rhs) |
Return the sum of the specified arguments. | |
template<typename U , typename V > | |
complex_return_t< U, V > | complex_divide (const U &lhs, const V &rhs) |
Return the quotient of the specified arguments. | |
template<typename U , typename V , require_any_complex_t< U, V > * = nullptr> | |
complex_return_t< U, V > | complex_multiply (const U &lhs, const V &rhs) |
Return the product of the specified arguments. | |
template<typename U , typename V > | |
complex_return_t< U, V > | complex_subtract (const U &lhs, const V &rhs) |
Return the difference between specified arguments. | |
void | pipe_in (std::stringstream &ss) |
No-op. | |
template<typename Arg0 , typename... Args> | |
void | pipe_in (std::stringstream &ss, Arg0 arg0, const Args... args) |
Pipes given arguments into a stringstream. | |
template<typename... Args> | |
void | elementwise_throw_domain_error (const Args... args) |
Throws domain error with concatenation of arguments for the error message. | |
constexpr auto | construct_idx () noexcept |
template<typename... Idxs> | |
auto | construct_idx (size_t i, Idxs... idxs) |
auto | make_iter_name (const char *name) |
template<typename... Idxs> | |
auto | make_iter_name (const char *name, Idxs... idxs) |
Given a name and index, generate a new name with the index attached. | |
template<typename V > | |
V | complex_abs (const std::complex< V > &z) |
Return the absolute value of the complex argument. | |
template<typename V > | |
std::complex< V > | complex_acos (const std::complex< V > &x) |
Return the arc cosine of the complex argument. | |
template<typename V > | |
std::complex< V > | complex_acosh (const std::complex< V > &z) |
Return the hyperbolic arc cosine of the complex argument. | |
template<typename V > | |
V | complex_arg (const std::complex< V > &z) |
Return the phase angle of the complex argument. | |
template<typename V > | |
std::complex< V > | complex_asin (const std::complex< V > &z) |
Return the arc sine of the complex argument. | |
template<typename V > | |
std::complex< V > | complex_asinh (const std::complex< V > &z) |
Return the hyperbolic arc sine of the complex argument. | |
template<typename V > | |
std::complex< V > | complex_atan (const std::complex< V > &z) |
Return the arc tangent of the complex argument. | |
template<typename V > | |
std::complex< V > | complex_atanh (const std::complex< V > &z) |
Return the hyperbolic arc tangent of the complex argument. | |
size_t | fft_next_good_size (size_t N) |
Find the optimal next size for the FFT so that a minimum number of zeros are padded. | |
template<typename T > | |
std::complex< T > | complex_cos (const std::complex< T > &z) |
Return the cosine of the complex argument. | |
template<typename V > | |
std::complex< V > | complex_cosh (const std::complex< V > &z) |
Return the hyperbolic cosine of the complex argument. | |
template<typename V > | |
std::complex< V > | complex_exp (const std::complex< V > &z) |
Return the natural (base e) complex exponentiation of the specified complex argument. | |
template<typename T_x , typename T_sigma , typename T_l > | |
Eigen::Matrix< return_type_t< T_x, T_sigma, T_l >, Eigen::Dynamic, Eigen::Dynamic > | gp_exp_quad_cov (const std::vector< T_x > &x, const T_sigma &sigma_sq, const T_l &neg_half_inv_l_sq) |
Returns a squared exponential kernel. | |
template<typename T_x1 , typename T_x2 , typename T_sigma , typename T_l > | |
Eigen::Matrix< return_type_t< T_x1, T_x2, T_sigma, T_l >, Eigen::Dynamic, Eigen::Dynamic > | gp_exp_quad_cov (const std::vector< T_x1 > &x1, const std::vector< T_x2 > &x2, const T_sigma &sigma_sq, const T_l &neg_half_inv_l_sq) |
Returns a squared exponential kernel. | |
template<bool calc_a1, bool calc_a2, bool calc_b1, typename T1 , typename T2 , typename T3 , typename T_z , typename ScalarT = return_type_t<T1, T2, T3, T_z>, typename TupleT = std::tuple<ScalarT, ScalarT, ScalarT>> | |
TupleT | grad_2F1_impl_ab (const T1 &a1, const T2 &a2, const T3 &b1, const T_z &z, double precision=1e-14, int max_steps=1e6) |
Implementation function to calculate the gradients of the hypergeometric function, 2F1 with respect to the a1, a2, and b2 parameters. | |
template<bool calc_a1, bool calc_a2, bool calc_b1, bool calc_z, typename T1 , typename T2 , typename T3 , typename T_z , typename ScalarT = return_type_t<T1, T2, T3, T_z>, typename TupleT = std::tuple<ScalarT, ScalarT, ScalarT, ScalarT>> | |
TupleT | grad_2F1_impl (const T1 &a1, const T2 &a2, const T3 &b1, const T_z &z, double precision=1e-14, int max_steps=1e6) |
Implementation function to calculate the gradients of the hypergeometric function, 2F1. | |
template<typename Ta1 , typename Ta2 , typename Tb , typename Tz , typename RtnT = boost::optional<return_type_t<Ta1, Ta1, Tb, Tz>>, require_all_arithmetic_t< Ta1, Ta2, Tb, Tz > * = nullptr> | |
RtnT | hyper_2F1_special_cases (const Ta1 &a1, const Ta2 &a2, const Tb &b, const Tz &z) |
Calculate the Gauss Hypergeometric (2F1) function for special-case combinations of parameters which can be calculated in closed-form. | |
template<typename Ta , typename Tb , typename Tz , require_all_vector_t< Ta, Tb > * = nullptr, require_stan_scalar_t< Tz > * = nullptr> | |
return_type_t< Ta, Tb, Tz > | hypergeometric_3F2_infsum (const Ta &a, const Tb &b, const Tz &z, double precision=1e-6, int max_steps=1e5) |
double | inv_Phi_lambda (double p) |
The inverse of the unit normal cumulative distribution function. | |
template<typename V > | |
std::complex< V > | complex_log (const std::complex< V > &z) |
Return the natural logarithm of the complex argument. | |
template<typename V > | |
std::complex< V > | complex_log10 (const std::complex< V > &z) |
Return the base 10 logarithm of the complex argument. | |
template<typename V > | |
V | complex_norm (const std::complex< V > &z) |
Return the squared magnitude of the complex argument. | |
template<typename U , typename V > | |
complex_return_t< U, V > | complex_polar (const U &r, const V &theta) |
Returns complex number with specified magnitude and phase angle. | |
template<typename U , typename V > | |
complex_return_t< U, V > | complex_pow (const U &x, const V &y) |
Return the first argument raised to the power of the second argument. | |
template<typename V > | |
std::complex< V > | complex_proj (const std::complex< V > &z) |
Return the projection of the complex argument onto the Riemann sphere. | |
template<typename T , int R, int C> | |
void | resize (Eigen::Matrix< T, R, C > &x, const std::vector< int > &dims, int pos) |
template<typename T > | |
void | resize (T, const std::vector< int > &, int) |
template<typename T > | |
void | resize (std::vector< T > &x, const std::vector< int > &dims, int pos) |
template<typename V > | |
std::complex< V > | complex_sin (const std::complex< V > &z) |
Return the sine of the complex argument. | |
template<typename V > | |
std::complex< V > | complex_sinh (const std::complex< V > &z) |
Return the hyperbolic sine of the complex argument. | |
template<typename V > | |
std::complex< V > | complex_sqrt (const std::complex< V > &z) |
Return the square root of the complex argument. | |
template<typename V > | |
std::complex< V > | complex_tan (const std::complex< V > &z) |
Return the tangent of the complex argument. | |
template<typename V > | |
std::complex< V > | complex_tanh (const std::complex< V > &z) |
Return the hyperbolic tangent of the complex argument. | |
auto | sum_vector_sizes () |
template<typename Vec , typename... VecArgs> | |
auto | sum_vector_sizes (const Vec &x, const VecArgs &... args) |
Get the internal sizes of a pack of vectors. | |
template<typename VecInOut > | |
void | append_vectors (VecInOut &x) |
End of recursion for appending to vector. | |
template<typename VecInOut , typename VecIn , typename... VecArgs> | |
void | append_vectors (VecInOut &x, const VecIn &y, const VecArgs &... args) |
Fill a vector with other vectors. | |
template<class F , class Tuple , typename... PreArgs, std::size_t... I> | |
constexpr decltype(auto) | apply_impl (F &&f, Tuple &&t, std::index_sequence< I... > i, PreArgs &&... pre_args) |
template<typename F , typename T , size_t... Is> | |
constexpr auto | for_each (F &&f, T &&t, std::index_sequence< Is... >) |
Implementation of for_each. | |
template<typename F , typename T1 , typename T2 , size_t... Is> | |
constexpr auto | for_each (F &&f, T1 &&t1, T2 &&t2, std::index_sequence< Is... >) |
Implementation of Binary for_each. | |
template<typename F , typename T1 , typename T2 , typename T3 , size_t... Is> | |
constexpr auto | for_each (F &&f, T1 &&t1, T2 &&t2, T3 &&t3, std::index_sequence< Is... >) |
Implementation of ternary for_each. | |
void | combination (Eigen::Matrix< int, Eigen::Dynamic, 1 > &c, const int dim, const int p, const int x) |
Get the [x]-th lexicographically ordered set of [p] elements in [dim] output is in [c], and should be sizeof(int)*[p] "Algorithm 515: Generation of a Vector from the Lexicographical Index"; Buckles, B. | |
template<typename Scalar > | |
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > | combos (const int k, const Scalar lambda, const int dim) |
Compute a matrix [p] of all [dim]-component vectors with [k] components equal to [lambda] and other components equal to zero. | |
template<typename Scalar > | |
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > | signcombos (const int k, const Scalar lambda, const int dim) |
Compute a matrix [p] of all [dim]-component vectors with [k] components equal to [±lambda] and other components equal to zero (with all possible signs). | |
std::tuple< std::array< Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic >, 4 >, Eigen::Matrix< double, 5, 1 >, Eigen::Matrix< double, 4, 1 > > | make_GenzMalik (const int dim) |
Compute the points and weights corresponding to a [dim]-dimensional Genz-Malik cubature rule. | |
template<typename F , typename T_a , typename T_b , typename ParsPairT > | |
auto | gauss_kronrod (const F &integrand, const T_a a, const T_b b, const ParsPairT &pars_pair) |
Compute the integral of the function to be integrated (integrand) from a to b for one dimension. | |
template<typename F , typename GenzMalik , typename T_a , typename T_b , typename ParsTupleT > | |
auto | integrate_GenzMalik (const F &integrand, const GenzMalik &genz_malik, const int dim, const Eigen::Matrix< T_a, Eigen::Dynamic, 1 > &a, const Eigen::Matrix< T_b, Eigen::Dynamic, 1 > &b, const ParsTupleT &pars_tuple) |
Compute the integral of the function to be integrated (integrand) from a to b for more than one dimensions. | |
template<int call_id, typename F , typename T_shared_param , typename T_job_param , require_eigen_col_vector_t< T_shared_param > * = nullptr> | |
Eigen::Matrix< return_type_t< T_shared_param, T_job_param >, Eigen::Dynamic, 1 > | map_rect_concurrent (const T_shared_param &shared_params, const std::vector< Eigen::Matrix< T_job_param, Eigen::Dynamic, 1 > > &job_params, const std::vector< std::vector< double > > &x_r, const std::vector< std::vector< int > > &x_i, std::ostream *msgs=nullptr) |
template<int call_id, typename F , typename T_shared_param , typename T_job_param > | |
Eigen::Matrix< return_type_t< T_shared_param, T_job_param >, Eigen::Dynamic, 1 > | map_rect_mpi (const T_shared_param &shared_params, const std::vector< Eigen::Matrix< T_job_param, Eigen::Dynamic, 1 > > &job_params, const std::vector< std::vector< double > > &x_r, const std::vector< std::vector< int > > &x_i, std::ostream *msgs=nullptr) |
template<typename T1 , typename T2 > | |
constexpr bool | eigen_static_size_match (T1 desired, T2 actual) |
template<typename T > | |
auto | holder_handle_element (T &a, T *&res) |
Handles single element (moving rvalue non-expressions to heap) for construction of holder or holder_cl from a functor. | |
template<typename T , std::enable_if_t<!(Eigen::internal::traits< std::decay_t< T > >::Flags &Eigen::NestByRefBit)> * = nullptr> | |
auto | holder_handle_element (T &&a, std::remove_reference_t< T > *&res) |
template<typename T , require_t< std::is_rvalue_reference< T && > > * = nullptr, std::enable_if_t< static_cast< bool >(Eigen::internal::traits< std::decay_t< T > >::Flags &Eigen::NestByRefBit)> * = nullptr> | |
auto | holder_handle_element (T &&a, T *&res) |
Handles single element (moving rvalue non-expressions to heap) for construction of holder or holder_cl from a functor. | |
template<typename T , std::size_t... Is, typename... Args> | |
auto | make_holder_impl_construct_object (T &&expr, std::index_sequence< Is... >, const std::tuple< Args *... > &ptrs) |
Second step in implementation of construction holder from a functor. | |
template<typename F , std::size_t... Is, typename... Args> | |
auto | make_holder_impl (const F &func, std::index_sequence< Is... >, Args &&... args) |
Implementation of construction holder from a functor. | |
template<class F , std::size_t... Is> | |
constexpr auto | index_apply_impl (F &&f, std::index_sequence< Is... >) |
template<class RNG > | |
Eigen::VectorXd | multi_normal_semidefinite_rng (const Eigen::VectorXd &mu, const Eigen::LDLT< Eigen::MatrixXd > &S_ldlt, RNG &rng) |
Return a multivariate normal random variate with the given location and covariance using the specified random number generator. | |
template<typename T_x , typename T_k > | |
return_type_t< T_x, T_k > | von_mises_cdf_series (const T_x &x, const T_k &k) |
This implementation of the von Mises cdf is a copy of scipy's. | |
template<typename T_x , typename T_k > | |
return_type_t< T_x, T_k > | von_mises_cdf_normalapprox (const T_x &x, const T_k &k) |
conv_mises_cdf_normapprox(x, k) is used to approximate the von Mises cdf for k > 50. | |
template<typename T_x , typename T_k > | |
return_type_t< T_x, T_k > | von_mises_cdf_centered (const T_x &x, const T_k &k) |
This function calculates the cdf of the von Mises distribution in the case where the distribution has support on (-pi, pi) and has mean 0. | |
template<typename T_y , typename T_a , typename T_v , typename T_w , typename T_sv > | |
auto | wiener5_compute_error_term (T_y &&y, T_a &&a, T_v &&v_value, T_w &&w_value, T_sv &&sv) noexcept |
Calculate the 'error_term' term for a wiener5 density or gradient. | |
template<bool Density, GradientCalc GradW, typename T_y , typename T_a , typename T_w_value , typename T_err > | |
auto | wiener5_n_terms_small_t (T_y &&y, T_a &&a, T_w_value &&w_value, T_err &&error) noexcept |
Calculate the 'n_terms_small_t' term for a wiener5 density or gradient. | |
template<typename T_y , typename T_a , typename T_w_value , typename T_err > | |
auto | wiener5_density_large_reaction_time_terms (T_y &&y, T_a &&a, T_w_value &&w_value, T_err &&error) noexcept |
Calculate the 'n_terms_large_t' term for a wiener5 density. | |
template<GradientCalc GradW, typename T_y , typename T_a , typename T_w_value , typename T_err > | |
auto | wiener5_gradient_large_reaction_time_terms (T_y &&y, T_a &&a, T_w_value &&w_value, T_err &&error) noexcept |
Calculate the 'n_terms_large_t' term for a wiener5 gradient. | |
template<bool Density, GradientCalc GradW, typename T_y , typename T_a , typename T_w , typename T_nsmall , typename T_nlarge > | |
auto | wiener5_log_sum_exp (T_y &&y, T_a &&a, T_w &&w_value, T_nsmall &&n_terms_small_t, T_nlarge &&n_terms_large_t) noexcept |
Calculate the 'result' term and its sign for a wiener5 density or gradient. | |
template<bool NaturalScale = false, typename T_y , typename T_a , typename T_w , typename T_v , typename T_sv , typename T_err > | |
auto | wiener5_density (const T_y &y, const T_a &a, const T_v &v_value, const T_w &w_value, const T_sv &sv, T_err &&err=log(1e-12)) noexcept |
Calculate the wiener5 density. | |
template<bool WrtLog = false, typename T_y , typename T_a , typename T_w , typename T_v , typename T_sv , typename T_err > | |
auto | wiener5_grad_t (const T_y &y, const T_a &a, const T_v &v_value, const T_w &w_value, const T_sv &sv, T_err &&err=log(1e-12)) noexcept |
Calculate the derivative of the wiener5 density w.r.t. | |
template<bool WrtLog = false, typename T_y , typename T_a , typename T_w , typename T_v , typename T_sv , typename T_err > | |
auto | wiener5_grad_a (const T_y &y, const T_a &a, const T_v &v_value, const T_w &w_value, const T_sv &sv, T_err &&err=log(1e-12)) noexcept |
Calculate the derivative of the wiener5 density w.r.t. | |
template<bool WrtLog = false, typename T_y , typename T_a , typename T_w , typename T_v , typename T_sv , typename T_err > | |
auto | wiener5_grad_v (const T_y &y, const T_a &a, const T_v &v_value, const T_w &w_value, const T_sv &sv, T_err &&err=log(1e-12)) noexcept |
Calculate the derivative of the wiener5 density w.r.t. | |
template<bool WrtLog = false, typename T_y , typename T_a , typename T_w , typename T_v , typename T_sv , typename T_err > | |
auto | wiener5_grad_w (const T_y &y, const T_a &a, const T_v &v_value, const T_w &w_value, const T_sv &sv, T_err &&err=log(1e-12)) noexcept |
Calculate the derivative of the wiener5 density w.r.t. | |
template<bool WrtLog = false, typename T_y , typename T_a , typename T_w , typename T_v , typename T_sv , typename T_err > | |
auto | wiener5_grad_sv (const T_y &y, const T_a &a, const T_v &v_value, const T_w &w_value, const T_sv &sv, T_err &&err=log(1e-12)) noexcept |
Calculate the derivative of the wiener5 density w.r.t. | |
template<size_t NestedIndex, typename Scalar1 , typename Scalar2 > | |
void | assign_err (Scalar1 arg, Scalar2 err) |
Utility function for replacing a value with a specified error value. | |
template<size_t NestedIndex, typename Scalar , typename... TArgs> | |
void | assign_err (std::tuple< TArgs... > &args_tuple, Scalar err) |
Utility function for replacing a value with a specified error value, overload for use when the value is stored within a tuple. | |
template<size_t ErrIndex, size_t NestedIndex = 0, GradientCalc GradW7 = GradientCalc::OFF, bool LogResult = true, typename F , typename T_err , typename... ArgsTupleT> | |
auto | estimate_with_err_check (F &&functor, T_err &&err, ArgsTupleT &&... args_tuple) |
Utility function for estimating a function with a given set of arguments, checking the result against a provided error tolerance, and re-estimating the function with the increased error if it fails. | |
template<typename T_y , typename T_a , typename T_v , typename T_w , typename T_sv , typename T_sw , typename T_err > | |
auto | wiener7_grad_sw (const T_y &y, const T_a &a, const T_v &v, const T_w &w, const T_sv &sv, const T_sw &sw, T_err log_error) |
Calculate the derivative of the wiener7 density w.r.t. | |
template<GradientCalc GradSW, typename F , typename T_y , typename T_a , typename T_v , typename T_w , typename T_sv , typename T_sw , typename T_err , std::enable_if_t<!GradSW > * = nullptr> | |
auto | conditionally_grad_sw (F &&functor, T_y &&y_diff, T_a &&a, T_v &&v, T_w &&w, T_sv &&sv, T_sw &&sw, T_err &&log_error) |
Helper function for agnostically calling wiener5 functions (to be integrated over) or directly calling wiener7 functions, accounting for the different number of arguments. | |
template<GradientCalc GradSW, GradientCalc GradW7 = GradientCalc::OFF, typename Wiener7FunctorT , typename T_err , typename... TArgs> | |
auto | wiener7_integrate (const Wiener7FunctorT &wiener7_functor, T_err &&hcubature_err, TArgs &&... args) |
Implementation function for preparing arguments and functor to be passed to the hcubature() function for calculating wiener7 parameters via integration. | |
template<typename VecVar , require_std_vector_vt< is_var, VecVar > * = nullptr, typename... Pargs> | |
size_t | count_vars_impl (size_t count, VecVar &&x, Pargs &&... args) |
Count the number of vars in x (a std::vector of vars), add it to the running total, count the number of vars in the remaining arguments and return the result. | |
template<typename VecContainer , require_std_vector_st< is_var, VecContainer > * = nullptr, require_std_vector_vt< is_container, VecContainer > * = nullptr, typename... Pargs> | |
size_t | count_vars_impl (size_t count, VecContainer &&x, Pargs &&... args) |
Count the number of vars in x (a std::vector holding other containers), add it to the running total, count the number of vars in the remaining arguments and return the result. | |
template<typename EigT , require_eigen_vt< is_var, EigT > * = nullptr, typename... Pargs> | |
size_t | count_vars_impl (size_t count, EigT &&x, Pargs &&... args) |
Count the number of vars in x (an eigen container), add it to the running total, count the number of vars in the remaining arguments and return the result. | |
template<typename... Pargs> | |
size_t | count_vars_impl (size_t count, const var &x, Pargs &&... args) |
Add one to the running total number of vars, count the number of vars in the remaining arguments and return the result. | |
template<typename Arith , require_arithmetic_t< scalar_type_t< Arith > > * = nullptr, typename... Pargs> | |
size_t | count_vars_impl (size_t count, Arith &x, Pargs &&... args) |
Arguments without vars contribute zero to the total number of vars. | |
size_t | count_vars_impl (size_t count) |
End count_vars_impl recursion and return total number of counted vars. | |
template<typename LMat , typename LAMat > | |
void | initialize_return (LMat &L, const LAMat &L_A, vari *&dummy) |
template<typename T1 , typename T2 , typename T3 > | |
auto | unblocked_cholesky_lambda (T1 &L_A, T2 &L, T3 &A) |
Reverse mode differentiation algorithm reference: | |
template<typename T1 , typename T2 , typename T3 > | |
auto | cholesky_lambda (T1 &L_A, T2 &L, T3 &A) |
Reverse mode differentiation algorithm reference: | |
template<typename Result_ , typename WMat_ , typename B_ > | |
void | make_csr_adjoint (Result_ &&res, WMat_ &&w_mat, B_ &&b) |
Helper function to construct the csr_adjoint struct. | |
template<typename T1 , typename T2 , typename T3 , typename T4 , require_all_matrix_t< T1, T2, T3 > * = nullptr> | |
auto | fma_reverse_pass (T1 &arena_x, T2 &arena_y, T3 &arena_z, T4 &ret) |
Overload for matrix, matrix, matrix. | |
template<typename T1 , typename T2 , typename T3 , typename T4 , require_all_matrix_t< T2, T3 > * = nullptr, require_stan_scalar_t< T1 > * = nullptr> | |
auto | fma_reverse_pass (T1 &arena_x, T2 &arena_y, T3 &arena_z, T4 &ret) |
Overload for scalar, matrix, matrix. | |
template<typename T1 , typename T2 > | |
auto | generalized_inverse_lambda (T1 &G_arena, T2 &inv_G) |
template<typename Mat1 , typename Mat2 , require_all_matrix_t< Mat1, Mat2 > * = nullptr, require_any_var_matrix_t< Mat1, Mat2 > * = nullptr> | |
auto | quad_form_impl (const Mat1 &A, const Mat2 &B, bool symmetric) |
Return the quadratic form \( B^T A B \). | |
var | calc_variance (size_t size, const var *dtrs) |
template<typename F > | |
void | finite_diff_hessian_auto (const F &f, const Eigen::VectorXd &x, double &fx, Eigen::VectorXd &grad_fx, Eigen::MatrixXd &hess_fx) |
Calculate the value and the Hessian of the specified function at the specified argument using first-order finite difference of gradients, automatically setting the stepsize between the function evaluations along a dimension. | |
template<typename F > | |
void | finite_diff_hessian_times_vector_auto (const F &f, const Eigen::VectorXd &x, const Eigen::VectorXd &v, double &fx, Eigen::VectorXd &hvp) |
Calculate the value and the product of the Hessian and the specified vector of the specified function at the specified argument using central finite difference of gradients, automatically setting the stepsize between the function evaluations along a dimension. | |
template<typename T1 , typename T2 , require_all_kernel_expressions_and_none_scalar_t< T1, T2 > * = nullptr> | |
void | update_adjoints (var_value< T1 > &x, const T2 &y, const vari &z) |
template<typename T1 , typename T2 , require_all_kernel_expressions_and_none_scalar_t< T1, T2 > * = nullptr> | |
void | update_adjoints (var_value< T1 > &x, const T2 &y, const var &z) |
template<typename Scalar1 , typename Scalar2 , require_var_t< Scalar1 > * = nullptr, require_not_var_matrix_t< Scalar1 > * = nullptr, require_arithmetic_t< Scalar2 > * = nullptr> | |
void | update_adjoints (Scalar1 x, Scalar2 y, const vari &z) noexcept |
template<typename Scalar1 , typename Scalar2 , require_var_t< Scalar1 > * = nullptr, require_not_var_matrix_t< Scalar1 > * = nullptr, require_arithmetic_t< Scalar2 > * = nullptr> | |
void | update_adjoints (Scalar1 x, Scalar2 y, const var &z) noexcept |
template<typename Matrix1 , typename Matrix2 , require_rev_matrix_t< Matrix1 > * = nullptr, require_st_arithmetic< Matrix2 > * = nullptr> | |
void | update_adjoints (Matrix1 &x, const Matrix2 &y, const vari &z) |
template<typename Matrix1 , typename Matrix2 , require_rev_matrix_t< Matrix1 > * = nullptr, require_st_arithmetic< Matrix2 > * = nullptr> | |
void | update_adjoints (Matrix1 &x, const Matrix2 &y, const var &z) |
template<typename Arith , typename Alt , require_st_arithmetic< Arith > * = nullptr> | |
constexpr void | update_adjoints (Arith &&, Alt &&, const vari &) noexcept |
template<typename Arith , typename Alt , require_st_arithmetic< Arith > * = nullptr> | |
constexpr void | update_adjoints (Arith &&, Alt &&, const var &) noexcept |
template<typename StdVec1 , typename Vec2 , require_std_vector_t< StdVec1 > * = nullptr, require_st_arithmetic< Vec2 > * = nullptr> | |
void | update_adjoints (StdVec1 &x, const Vec2 &y, const vari &z) |
template<typename StdVec1 , typename Vec2 , require_std_vector_t< StdVec1 > * = nullptr, require_st_arithmetic< Vec2 > * = nullptr> | |
void | update_adjoints (StdVec1 &x, const Vec2 &y, const var &z) |
Variables | |
const size_t | DEFAULT_INITIAL_NBYTES = 1 << 16 |
static const double_d | perturbation_range = 1e-20 |
const char | opencl_normal_lcdf_impl [] |
const char | opencl_normal_lcdf_ldncdf_impl [] |
const char | opencl_std_normal_lcdf_impl [] |
const char | opencl_std_normal_lcdf_dnlcdf [] |
const int | BIGINT = 2000000000 |
The largest integer that protects against floating point errors for the inv_Phi function. | |
static constexpr std::array< double, 8 > | xd7 |
static constexpr std::array< double, 8 > | wd7 |
static constexpr std::array< double, 4 > | gwd7 |
constexpr double | neg_binomial_alpha_cutoff = 1e10 |