21.2 Beta proportion distribution
21.2.1 Probability density function
If μ∈(0,1) and κ∈R+, then for θ∈(0,1), Beta_Proportion(θ|μ,κ)=1B(μκ,(1−μ)κ)θμκ−1(1−θ)(1−μ)κ−1, where the beta function B() is as defined in section combinatorial functions.
Warning: If θ=0 or θ=1, then the probability is 0 and the log probability is −∞. Similarly, the distribution requires μ∈(0,1) and strictly positive parameter, κ>0.
21.2.2 Sampling statement
theta ~
beta_proportion
(mu, kappa)
Increment target log probability density with beta_proportion_lupdf(theta | mu, kappa)
.
Available since 2.19
21.2.3 Stan functions
real
beta_proportion_lpdf
(reals theta | reals mu, reals kappa)
The log of the beta_proportion density of theta
in (0,1) given
mean mu and precision kappa
Available since 2.19
real
beta_proportion_lupdf
(reals theta | reals mu, reals kappa)
The log of the beta_proportion density of theta
in (0,1) given
mean mu and precision kappa dropping constant additive terms
Available since 2.25
real
beta_proportion_lcdf
(reals theta | reals mu, reals kappa)
The log of the beta_proportion cumulative distribution function of
theta
in (0,1) given mean mu and precision kappa
Available since 2.18
real
beta_proportion_lccdf
(reals theta | reals mu, reals kappa)
The log of the beta_proportion complementary cumulative distribution
function of theta
in (0,1) given mean mu and precision kappa
Available since 2.18
R
beta_proportion_rng
(reals mu, reals kappa)
Generate a beta_proportion variate with mean mu and precision kappa;
may only be used in transformed data and generated quantities blocks.
For a description of argument and return types, see section
vectorized PRNG functions.
Available since 2.18