This is an old version, view current version.

11.5 integrate_ode_rk45, integrate_ode_adams, integrate_ode_bdf ODE Integrators

These ODE integrator functions have been replaced by those described in:

11.5.1 Specifying an ordinary differential equation as a function

A system of ODEs is specified as an ordinary function in Stan within the functions block. The ODE system function must have this function signature:

array[] real ode(real time, array[] real state, array[] real theta,
array[] real x_r, array[] int x_i);

The ODE system function should return the derivative of the state with respect to time at the time provided. The length of the returned real array must match the length of the state input into the function.

The arguments to this function are:

• time, the time to evaluate the ODE system

• state, the state of the ODE system at the time specified

• theta, parameter values used to evaluate the ODE system

• x_r, data values used to evaluate the ODE system

• x_i, integer data values used to evaluate the ODE system.

The ODE system function separates parameter values, theta, from data values, x_r, for efficiency in computing the gradients of the ODE.

11.5.2 Non-stiff solver

array[,] real integrate_ode_rk45(function ode, array[] real initial_state, real initial_time, array[] real times, array[] real theta, array[] real x_r, array[] int x_i)
Solves the ODE system for the times provided using the Dormand-Prince algorithm, a 4th/5th order Runge-Kutta method.
Available since 2.10, deprecated in 2.24

array[,] real integrate_ode_rk45(function ode, array[] real initial_state, real initial_time, array[] real times, array[] real theta, array[] real x_r, array[] int x_i, real rel_tol, real abs_tol, int max_num_steps)
Solves the ODE system for the times provided using the Dormand-Prince algorithm, a 4th/5th order Runge-Kutta method with additional control parameters for the solver.
Available since 2.10, deprecated in 2.24

array[,] real integrate_ode(function ode, array[] real initial_state, real initial_time, array[] real times, array[] real theta, array[] real x_r, array[] int x_i)
Solves the ODE system for the times provided using the Dormand-Prince algorithm, a 4th/5th order Runge-Kutta method.
Available since 2.10, deprecated in 2.24

array[,] real integrate_ode_adams(function ode, array[] real initial_state, real initial_time, array[] real times, array[] real theta, data array[] real x_r, data array[] int x_i)
Solves the ODE system for the times provided using the Adams-Moulton method.
Available since 2.23, deprecated in 2.24

array[,] real integrate_ode_adams(function ode, array[] real initial_state, real initial_time, array[] real times, array[] real theta, data array[] real x_r, data array[] int x_i, data real rel_tol, data real abs_tol, data int max_num_steps)
Solves the ODE system for the times provided using the Adams-Moulton method with additional control parameters for the solver.
Available since 2.23, deprecated in 2.24

11.5.3 Stiff solver

array[,] real integrate_ode_bdf(function ode, array[] real initial_state, real initial_time, array[] real times, array[] real theta, data array[] real x_r, data array[] int x_i)
Solves the ODE system for the times provided using the backward differentiation formula (BDF) method.
Available since 2.10, deprecated in 2.24

array[,] real integrate_ode_bdf(function ode, array[] real initial_state, real initial_time, array[] real times, array[] real theta, data array[] real x_r, data array[] int x_i, data real rel_tol, data real abs_tol, data int max_num_steps)
Solves the ODE system for the times provided using the backward differentiation formula (BDF) method with additional control parameters for the solver.
Available since 2.10, deprecated in 2.24

11.5.4 Arguments to the ODE solvers

The arguments to the ODE solvers in both the stiff and non-stiff cases are as follows.

• ode: function literal referring to a function specifying the system of differential equations with signature:
(real, array[] real, array[] real, data array[] real, data array[] int):array[] real

The arguments represent (1) time, (2) system state, (3) parameters, (4) real data, and (5) integer data, and the return value contains the derivatives with respect to time of the state,

• initial_state: initial state, type array[] real,

• initial_time: initial time, type int or real,

• times: solution times, type array[] real,

• theta: parameters, type array[] real,

• data x_r: real data, type array[] real, data only, and

• data x_i: integer data, type array[] int, data only.

For more fine-grained control of the ODE solvers, these parameters can also be provided:

• data rel_tol: relative tolerance for the ODE solver, type real, data only,

• data abs_tol: absolute tolerance for the ODE solver, type real, data only, and

• data max_num_steps: maximum number of steps to take in the ODE solver, type int, data only.

11.5.4.1 Return values

The return value for the ODE solvers is an array of type array[,] real, with values consisting of solutions at the specified times.

11.5.4.2 Sizes and parallel arrays

The sizes must match, and in particular, the following groups are of the same size:

• state variables passed into the system function, derivatives returned by the system function, initial state passed into the solver, and rows of the return value of the solver,

• solution times and number of rows of the return value of the solver,

• parameters, real data and integer data passed to the solver will be passed to the system function