1#ifndef STAN_MATH_PRIM_PROB_STD_NORMAL_LCDF_HPP
2#define STAN_MATH_PRIM_PROB_STD_NORMAL_LCDF_HPP
26 require_all_not_nonscalar_prim_or_rev_kernel_expression_t<T_y>* =
nullptr>
34 static constexpr const char* function =
"std_normal_lcdf";
42 T_partials_return lcdf(0.0);
48 for (
size_t n = 0; n < N; n++) {
49 const T_partials_return y_dbl = y_vec.val(n);
51 const T_partials_return x2 =
square(scaled_y);
66 }
else if (scaled_y > -20.0) {
69 }
else if (10.0 *
log(
fabs(scaled_y))
70 <
log(std::numeric_limits<T_partials_return>::max())) {
75 const T_partials_return x4 =
pow(scaled_y, 4);
76 const T_partials_return x6 =
pow(scaled_y, 6);
77 const T_partials_return x8 =
pow(scaled_y, 8);
78 const T_partials_return x10 =
pow(scaled_y, 10);
79 const T_partials_return temp_p
80 = 0.000658749161529837803157 + 0.0160837851487422766278 / x2
81 + 0.125781726111229246204 / x4 + 0.360344899949804439429 / x6
82 + 0.305326634961232344035 / x8 + 0.0163153871373020978498 / x10;
83 const T_partials_return temp_q
84 = -0.00233520497626869185443 - 0.0605183413124413191178 / x2
85 - 0.527905102951428412248 / x4 - 1.87295284992346047209 / x6
86 - 2.56852019228982242072 / x8 - 1.0 / x10;
88 -
log(-scaled_y) - x2;
98 T_partials_return dnlcdf = 0.0;
99 T_partials_return t = 0.0;
100 T_partials_return t2 = 0.0;
101 T_partials_return t4 = 0.0;
105 if (scaled_y > 2.9) {
107 t = 1.0 / (1.0 + 0.3275911 * scaled_y);
111 / (
exp(x2) - 0.254829592 + 0.284496736 * t - 1.421413741 * t2
112 + 1.453152027 * t2 * t - 1.061405429 * t4);
113 }
else if (scaled_y > 2.5) {
121 dnlcdf = 0.0003849882382 - 0.002079084702 * t + 0.005229340880 * t2
122 - 0.008029540137 * t2 * t + 0.008232190507 * t4
123 - 0.005692364250 * t4 * t + 0.002399496363 *
pow(t, 6);
124 }
else if (scaled_y > 2.1) {
129 dnlcdf = 0.002846135439 - 0.01310032351 * t + 0.02732189391 * t2
130 - 0.03326906904 * t2 * t + 0.02482478940 * t4
131 - 0.009883071924 * t4 * t - 0.0002771362254 *
pow(t, 6);
132 }
else if (scaled_y > 1.5) {
137 dnlcdf = 0.01849212058 - 0.06876280470 * t + 0.1099906382 * t2
138 - 0.09274533184 * t2 * t + 0.03543327418 * t4
139 + 0.005644855518 * t4 * t - 0.01111434424 *
pow(t, 6);
140 }
else if (scaled_y > 0.8) {
145 dnlcdf = 0.1585747034 - 0.3898677543 * t + 0.3515963775 * t2
146 - 0.09748053605 * t2 * t - 0.04347986191 * t4
147 + 0.02182506378 * t4 * t + 0.01074751427 *
pow(t, 6);
148 }
else if (scaled_y > 0.1) {
153 dnlcdf = 0.6245634904 - 0.9521866949 * t + 0.3986215682 * t2
154 + 0.04700850676 * t2 * t - 0.03478651979 * t4
155 - 0.01772675404 * t4 * t + 0.0006577254811 *
pow(t, 6);
156 }
else if (10.0 *
log(
fabs(scaled_y))
157 <
log(std::numeric_limits<T_partials_return>::max())) {
162 t = 1.0 / (1.0 - 0.3275911 * scaled_y);
166 / (0.254829592 * t - 0.284496736 * t2 + 1.421413741 * t2 * t
167 - 1.453152027 * t4 + 1.061405429 * t4 * t);
170 if (scaled_y < -29.0) {
171 dnlcdf += 0.0015065154280332 * x2 - 0.3993154819705530 * scaled_y
172 - 4.2919418242931700;
173 }
else if (scaled_y < -17.0) {
174 dnlcdf += 0.0001263257217272 * x2 * scaled_y + 0.0123586859488623 * x2
175 - 0.0860505264736028 * scaled_y - 1.252783383752970;
176 }
else if (scaled_y < -7.0) {
177 dnlcdf += 0.000471585349920831 * x2 * scaled_y
178 + 0.0296839305424034 * x2 + 0.207402143352332 * scaled_y
180 }
else if (scaled_y < -3.9) {
181 dnlcdf += -0.0006972280656443 * x2 * scaled_y
182 + 0.0068218494628567 * x2 + 0.0585761964460277 * scaled_y
183 + 0.1034397670201370;
184 }
else if (scaled_y < -2.1) {
185 dnlcdf += -0.0018742199480885 * x2 * scaled_y
186 - 0.0097119598291202 * x2 - 0.0170137970924080 * scaled_y
187 - 0.0100428567412041;
199 return ops_partials.build(lcdf);
scalar_seq_view provides a uniform sequence-like wrapper around either a scalar or a sequence of scal...
return_type_t< T_y_cl > std_normal_lcdf(const T_y_cl &y)
Returns the log standard normal complementary cumulative distribution function.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
int64_t size(const T &m)
Returns the size (number of the elements) of a matrix_cl or var_value<matrix_cl<T>>.
static constexpr double negative_infinity()
Return negative infinity.
static constexpr double LOG_HALF
The natural logarithm of 0.5, .
static constexpr double positive_infinity()
Return positive infinity.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
auto pow(const T1 &x1, const T2 &x2)
fvar< T > log(const fvar< T > &x)
bool is_not_nan(const T_y &y)
Return true if y is not NaN.
static constexpr double INV_SQRT_TWO
The value of 1 over the square root of 2, .
fvar< T > erfc(const fvar< T > &x)
fvar< T > log1p(const fvar< T > &x)
void check_not_nan(const char *function, const char *name, const T_y &y)
Check if y is not NaN.
static constexpr double INV_SQRT_PI
The value of 1 over the square root of , .
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
fvar< T > fabs(const fvar< T > &x)
fvar< T > square(const fvar< T > &x)
fvar< T > exp(const fvar< T > &x)
typename ref_type_if< true, T >::type ref_type_t
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Extends std::true_type when instantiated with zero or more template parameters, all of which extend t...