1#ifndef STAN_MATH_OPENCL_PRIM_STD_NORMAL_LCDF_HPP 
    2#define STAN_MATH_OPENCL_PRIM_STD_NORMAL_LCDF_HPP 
   17    double std_normal_lcdf_lcdf_n; 
if (std_normal_lcdf_scaled_y > 0.0) {
 
   19      std_normal_lcdf_lcdf_n = 
log1p(-0.5 * 
erfc(std_normal_lcdf_scaled_y));
 
   20      if (
isnan(std_normal_lcdf_lcdf_n)) {
 
   21        std_normal_lcdf_lcdf_n = 0;
 
   23    } 
else if (std_normal_lcdf_scaled_y > -20.0) {
 
   25      std_normal_lcdf_lcdf_n = 
log(
erfc(-std_normal_lcdf_scaled_y)) - M_LN2;
 
   26    } 
else if (10.0 * 
log(fabs(std_normal_lcdf_scaled_y)) < 
log(DBL_MAX)) {
 
   31      const double x4 = 
pow(std_normal_lcdf_scaled_y, 4);
 
   32      const double x6 = 
pow(std_normal_lcdf_scaled_y, 6);
 
   33      const double x8 = 
pow(std_normal_lcdf_scaled_y, 8);
 
   34      const double x10 = 
pow(std_normal_lcdf_scaled_y, 10);
 
   36          = 0.000658749161529837803157
 
   37            + 0.0160837851487422766278 / std_normal_lcdf_x2
 
   38            + 0.125781726111229246204 / x4 + 0.360344899949804439429 / x6
 
   39            + 0.305326634961232344035 / x8 + 0.0163153871373020978498 / x10;
 
   40      const double temp_q = -0.00233520497626869185443
 
   41                            - 0.0605183413124413191178 / std_normal_lcdf_x2
 
   42                            - 0.527905102951428412248 / x4
 
   43                            - 1.87295284992346047209 / x6
 
   44                            - 2.56852019228982242072 / x8 - 1.0 / x10;
 
   45      std_normal_lcdf_lcdf_n
 
   46          += 
log(0.5 * M_2_SQRTPI + (temp_p / temp_q) / std_normal_lcdf_x2)
 
   47             - M_LN2 - 
log(-std_normal_lcdf_scaled_y) - std_normal_lcdf_x2;
 
   50      std_normal_lcdf_lcdf_n = -INFINITY;
 
   56    double std_normal_lcdf_dnlcdf = 0.0; 
double t = 0.0; 
double t2 = 0.0;
 
   61    if (std_normal_lcdf_deriv_scaled_y > 2.9) {
 
   63      t = 1.0 / (1.0 + 0.3275911 * std_normal_lcdf_deriv_scaled_y);
 
   66      std_normal_lcdf_dnlcdf
 
   68            / (
exp(std_normal_lcdf_deriv_x2) - 0.254829592 + 0.284496736 * t
 
   69               - 1.421413741 * t2 + 1.453152027 * t2 * t - 1.061405429 * t4);
 
   70    } 
else if (std_normal_lcdf_deriv_scaled_y > 2.5) {
 
   75      t = std_normal_lcdf_deriv_scaled_y - 2.7;
 
   78      std_normal_lcdf_dnlcdf = 0.0003849882382 - 0.002079084702 * t
 
   79                               + 0.005229340880 * t2 - 0.008029540137 * t2 * t
 
   80                               + 0.008232190507 * t4 - 0.005692364250 * t4 * t
 
   81                               + 0.002399496363 * 
pow(t, 6);
 
   82    } 
else if (std_normal_lcdf_deriv_scaled_y > 2.1) {
 
   84      t = std_normal_lcdf_deriv_scaled_y - 2.3;
 
   87      std_normal_lcdf_dnlcdf = 0.002846135439 - 0.01310032351 * t
 
   88                               + 0.02732189391 * t2 - 0.03326906904 * t2 * t
 
   89                               + 0.02482478940 * t4 - 0.009883071924 * t4 * t
 
   90                               - 0.0002771362254 * 
pow(t, 6);
 
   91    } 
else if (std_normal_lcdf_deriv_scaled_y > 1.5) {
 
   93      t = std_normal_lcdf_deriv_scaled_y - 1.85;
 
   96      std_normal_lcdf_dnlcdf = 0.01849212058 - 0.06876280470 * t
 
   97                               + 0.1099906382 * t2 - 0.09274533184 * t2 * t
 
   98                               + 0.03543327418 * t4 + 0.005644855518 * t4 * t
 
   99                               - 0.01111434424 * 
pow(t, 6);
 
  100    } 
else if (std_normal_lcdf_deriv_scaled_y > 0.8) {
 
  102      t = std_normal_lcdf_deriv_scaled_y - 1.15;
 
  105      std_normal_lcdf_dnlcdf = 0.1585747034 - 0.3898677543 * t
 
  106                               + 0.3515963775 * t2 - 0.09748053605 * t2 * t
 
  107                               - 0.04347986191 * t4 + 0.02182506378 * t4 * t
 
  108                               + 0.01074751427 * 
pow(t, 6);
 
  109    } 
else if (std_normal_lcdf_deriv_scaled_y > 0.1) {
 
  111      t = std_normal_lcdf_deriv_scaled_y - 0.45;
 
  114      std_normal_lcdf_dnlcdf = 0.6245634904 - 0.9521866949 * t
 
  115                               + 0.3986215682 * t2 + 0.04700850676 * t2 * t
 
  116                               - 0.03478651979 * t4 - 0.01772675404 * t4 * t
 
  117                               + 0.0006577254811 * 
pow(t, 6);
 
  118    } 
else if (10.0 * 
log(
fabs(std_normal_lcdf_deriv_scaled_y))
 
  124      t = 1.0 / (1.0 - 0.3275911 * std_normal_lcdf_deriv_scaled_y);
 
  127      std_normal_lcdf_dnlcdf
 
  129            / (0.254829592 * t - 0.284496736 * t2 + 1.421413741 * t2 * t
 
  130               - 1.453152027 * t4 + 1.061405429 * t4 * t);
 
  133      if (std_normal_lcdf_deriv_scaled_y < -29.0) {
 
  134        std_normal_lcdf_dnlcdf
 
  135            += 0.0015065154280332 * std_normal_lcdf_deriv_x2
 
  136               - 0.3993154819705530 * std_normal_lcdf_deriv_scaled_y
 
  137               - 4.2919418242931700;
 
  138      } 
else if (std_normal_lcdf_deriv_scaled_y < -17.0) {
 
  139        std_normal_lcdf_dnlcdf
 
  140            += 0.0001263257217272 * std_normal_lcdf_deriv_x2
 
  141                   * std_normal_lcdf_deriv_scaled_y
 
  142               + 0.0123586859488623 * std_normal_lcdf_deriv_x2
 
  143               - 0.0860505264736028 * std_normal_lcdf_deriv_scaled_y
 
  145      } 
else if (std_normal_lcdf_deriv_scaled_y < -7.0) {
 
  146        std_normal_lcdf_dnlcdf
 
  147            += 0.000471585349920831 * std_normal_lcdf_deriv_x2
 
  148                   * std_normal_lcdf_deriv_scaled_y
 
  149               + 0.0296839305424034 * std_normal_lcdf_deriv_x2
 
  150               + 0.207402143352332 * std_normal_lcdf_deriv_scaled_y
 
  152      } 
else if (std_normal_lcdf_deriv_scaled_y < -3.9) {
 
  153        std_normal_lcdf_dnlcdf
 
  154            += -0.0006972280656443 * std_normal_lcdf_deriv_x2
 
  155                   * std_normal_lcdf_deriv_scaled_y
 
  156               + 0.0068218494628567 * std_normal_lcdf_deriv_x2
 
  157               + 0.0585761964460277 * std_normal_lcdf_deriv_scaled_y
 
  158               + 0.1034397670201370;
 
  159      } 
else if (std_normal_lcdf_deriv_scaled_y < -2.1) {
 
  160        std_normal_lcdf_dnlcdf
 
  161            += -0.0018742199480885 * std_normal_lcdf_deriv_x2
 
  162                   * std_normal_lcdf_deriv_scaled_y
 
  163               - 0.0097119598291202 * std_normal_lcdf_deriv_x2
 
  164               - 0.0170137970924080 * std_normal_lcdf_deriv_scaled_y
 
  165               - 0.0100428567412041;
 
  167    } 
else { std_normal_lcdf_dnlcdf = INFINITY; });
 
  178template <
typename T_y_cl,
 
  179          require_all_prim_or_rev_kernel_expression_t<T_y_cl>* = 
nullptr,
 
  180          require_any_not_stan_scalar_t<T_y_cl>* = 
nullptr>
 
  182  static constexpr const char* function = 
"std_normal_lcdf(OpenCL)";
 
  192  const auto& y_val = 
value_of(y_col);
 
  195      = 
check_cl(function, 
"Random variable", y_val, 
"not NaN");
 
  196  auto y_not_nan_expr = !isnan(y_val);
 
  199  auto x2 = 
square(scaled_y);
 
  201      opencl_code<internal::opencl_std_normal_lcdf_impl>(
 
  202          std::make_tuple(
"std_normal_lcdf_scaled_y", 
"std_normal_lcdf_x2"),
 
  204          .
template output<double>(
"std_normal_lcdf_lcdf_n"));
 
  205  auto dnlcdf = opencl_code<internal::opencl_std_normal_lcdf_dnlcdf>(
 
  206                    std::make_tuple(
"std_normal_lcdf_deriv_scaled_y",
 
  207                                    "std_normal_lcdf_deriv_x2"),
 
  209                    .template output<double>(
"std_normal_lcdf_dnlcdf");
 
  216      y_not_nan_expr, lcdf_expr, 
calc_if<is_autodiff_v<T_y_cl>>(y_deriv));
 
  222  if constexpr (is_autodiff_v<T_y_cl>) {
 
  223    partials<0>(ops_partials) = std::move(y_deriv_cl);
 
  225  return ops_partials.build(lcdf);
 
Represents an arithmetic matrix on the OpenCL device.
 
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
 
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
 
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
 
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
 
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
 
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
 
return_type_t< T_y_cl > std_normal_lcdf(const T_y_cl &y)
Returns the log standard normal complementary cumulative distribution function.
 
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
 
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
 
int64_t size(const T &m)
Returns the size (number of the elements) of a matrix_cl or var_value<matrix_cl<T>>.
 
const char opencl_std_normal_lcdf_dnlcdf[]
 
const char opencl_std_normal_lcdf_impl[]
 
auto pow(const T1 &x1, const T2 &x2)
 
T value_of(const fvar< T > &v)
Return the value of the specified variable.
 
fvar< T > log(const fvar< T > &x)
 
static constexpr double INV_SQRT_TWO
The value of 1 over the square root of 2, .
 
fvar< T > erfc(const fvar< T > &x)
 
fvar< T > log1p(const fvar< T > &x)
 
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
 
fvar< T > fabs(const fvar< T > &x)
 
fvar< T > square(const fvar< T > &x)
 
fvar< T > exp(const fvar< T > &x)
 
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
 
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.