Stan Math Library
4.9.0
Automatic Differentiation
|
#include <stan/math/prim/meta.hpp>
#include <stan/math/prim/fun/constants.hpp>
#include <stan/math/prim/fun/square.hpp>
#include <stan/math/prim/functor/apply_scalar_binary.hpp>
#include <cmath>
#include <complex>
Go to the source code of this file.
Namespaces | |
namespace | stan |
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation from C or the boost::math::lgamma implementation. | |
namespace | stan::math |
Matrices and templated mathematical functions. | |
namespace | stan::math::internal |
A comparator that works for any container type that has the brackets operator. | |
Functions | |
template<typename U , typename V > | |
complex_return_t< U, V > | stan::math::internal::complex_pow (const U &x, const V &y) |
Return the first argument raised to the power of the second argument. | |
template<typename T1 , typename T2 , require_arithmetic_t< T1 > * = nullptr, require_arithmetic_t< T2 > * = nullptr> | |
auto | stan::math::pow (const std::complex< T1 > &a, const std::complex< T2 > &b) |
Return the first argument raised to the power of the second argument. | |
template<typename T1 , typename T2 , require_arithmetic_t< T1 > * = nullptr, require_arithmetic_t< T2 > * = nullptr> | |
auto | stan::math::pow (const T1 &a, const std::complex< T2 > &b) |
template<typename T1 , typename T2 , require_arithmetic_t< T1 > * = nullptr, require_arithmetic_t< T2 > * = nullptr> | |
auto | stan::math::pow (const std::complex< T1 > &a, const T2 &b) |
template<typename T1 , typename T2 , require_any_fvar_t< base_type_t< T1 >, base_type_t< T2 > > * = nullptr, require_all_stan_scalar_t< T1, T2 > * = nullptr> | |
auto | stan::math::pow (const T1 &x1, const T2 &x2) |
template<typename T1 , typename T2 , require_any_container_t< T1, T2 > * = nullptr, require_all_not_matrix_st< is_var, T1, T2 > * = nullptr, require_any_fvar_t< base_type_t< T1 >, base_type_t< T2 > > * = nullptr> | |
auto | stan::math::pow (const T1 &a, const T2 &b) |
Returns the elementwise raising of the first argument to the power of the second argument. | |