Automatic Differentiation
 
Loading...
Searching...
No Matches
grad_2F1.hpp File Reference

Go to the source code of this file.

Namespaces

namespace  stan
 The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation from C or the boost::math::lgamma implementation.
 
namespace  stan::math
 Matrices and templated mathematical functions.
 
namespace  stan::math::internal
 A comparator that works for any container type that has the brackets operator.
 

Functions

template<bool calc_a1, bool calc_a2, bool calc_b1, typename T1 , typename T2 , typename T3 , typename T_z , typename ScalarT = return_type_t<T1, T2, T3, T_z>, typename TupleT = std::tuple<ScalarT, ScalarT, ScalarT>>
TupleT stan::math::internal::grad_2F1_impl_ab (const T1 &a1, const T2 &a2, const T3 &b1, const T_z &z, double precision=1e-14, int max_steps=1e6)
 Implementation function to calculate the gradients of the hypergeometric function, 2F1 with respect to the a1, a2, and b2 parameters.
 
template<bool calc_a1, bool calc_a2, bool calc_b1, bool calc_z, typename T1 , typename T2 , typename T3 , typename T_z , typename ScalarT = return_type_t<T1, T2, T3, T_z>, typename TupleT = std::tuple<ScalarT, ScalarT, ScalarT, ScalarT>>
TupleT stan::math::internal::grad_2F1_impl (const T1 &a1, const T2 &a2, const T3 &b1, const T_z &z, double precision=1e-14, int max_steps=1e6)
 Implementation function to calculate the gradients of the hypergeometric function, 2F1.
 
template<bool ReturnSameT, typename T1 , typename T2 , typename T3 , typename T_z , require_not_t< std::integral_constant< bool, ReturnSameT > > * = nullptr>
auto stan::math::grad_2F1 (const T1 &a1, const T2 &a2, const T3 &b1, const T_z &z, double precision=1e-14, int max_steps=1e6)
 Calculate the gradients of the hypergeometric function (2F1) as the power series stopping when the series converges to within precision or throwing when the function takes max_steps steps.
 
template<typename T1 , typename T2 , typename T3 , typename T_z >
auto stan::math::grad_2F1 (const T1 &a1, const T2 &a2, const T3 &b1, const T_z &z, double precision=1e-14, int max_steps=1e6)
 Calculate the gradients of the hypergeometric function (2F1) as the power series stopping when the series converges to within precision or throwing when the function takes max_steps steps.