template<bool ReturnSameT, typename T1 , typename T2 , typename T3 , typename T_z ,
require_not_t< std::integral_constant< bool, ReturnSameT > > * = nullptr>
auto stan::math::grad_2F1 |
( |
const T1 & |
a1, |
|
|
const T2 & |
a2, |
|
|
const T3 & |
b1, |
|
|
const T_z & |
z, |
|
|
double |
precision = 1e-14 , |
|
|
int |
max_steps = 1e6 |
|
) |
| |
|
inline |
Calculate the gradients of the hypergeometric function (2F1) as the power series stopping when the series converges to within precision
or throwing when the function takes max_steps
steps.
Overload for use where the destination gradients are not required to be the same type as the input variables (most use-cases except grad_inc_beta)
- Template Parameters
-
ReturnSameT | Whether return gradients need to be the same type as as inputs |
T1 | scalar type of a1 |
T2 | scalar type of a2 |
T3 | scalar type of b1 |
T_z | scalar type of z |
- Parameters
-
[in] | a1 | see generalized hypergeometric function definition |
[in] | a2 | see generalized hypergeometric function definition |
[in] | b1 | see generalized hypergeometric function definition |
[in] | z | see generalized hypergeometric function definition |
[in] | precision | magnitude of the increment of the infinite sum to truncate the sum |
[in] | max_steps | number of steps to take |
Overload for use where the destination gradients should be the same type as the input variables (needed for the grad_inc_beta overloads)
- Template Parameters
-
ReturnSameT | Whether return gradients need to be the same type as as inputs |
T1 | scalar type of a1 |
T2 | scalar type of a2 |
T3 | scalar type of b1 |
T_z | scalar type of z |
- Parameters
-
[in] | a1 | see generalized hypergeometric function definition |
[in] | a2 | see generalized hypergeometric function definition |
[in] | b1 | see generalized hypergeometric function definition |
[in] | z | see generalized hypergeometric function definition |
[in] | precision | magnitude of the increment of the infinite sum to truncate the sum |
[in] | max_steps | number of steps to take |
Definition at line 273 of file grad_2F1.hpp.