This is an old version, view current version.

16.2 Multinomial distribution, logit parameterization

Stan also provides a version of the multinomial probability mass function distribution with the K-simplex for the event count probabilities per category given on the unconstrained logistic scale.

16.2.1 Probability mass function

If KN, NN, and softmax1(θ)K-simplex, then for yNK such that Kk=1yk=N, \text{MultinomialLogit}(y|\theta) = \text{Multinomial}(y|\text{softmax}^{-1}(\theta)) = \binom{N}{y_1,\ldots,y_K} \prod_{k=1}^K [\text{softmax}^{-1}(\theta)_k]^{y_k}, where the multinomial coefficient is defined by \binom{N}{y_1,\ldots,y_k} = \frac{N!}{\prod_{k=1}^K y_k!}.

16.2.2 Sampling statement

y ~ multinomial_logit(theta)

Increment target log probability density with multinomial_logit_lupmf(y | theta).
Available since 2.24

16.2.3 Stan functions

real multinomial_logit_lpmf(array[] int y | vector theta)
The log multinomial probability mass function with outcome array y of size K given the K-simplex distribution parameter \text{softmax}^{-1}(\theta) and (implicit) total count N = sum(y)
Available since 2.24

real multinomial_logit_lupmf(array[] int y | vector theta)
The log multinomial probability mass function with outcome array y of size K given the K-simplex distribution parameter \text{softmax}^{-1}(\theta) and (implicit) total count N = sum(y) dropping constant additive terms
Available since 2.25

array[] int multinomial_logit_rng(vector theta, int N)
Generate a multinomial variate with simplex distribution parameter \text{softmax}^{-1}(\theta) and total count N; may only be used in transformed data and generated quantities blocks
Available since 2.24