This is an old version, view current version.

## 4.9 Complex hyperbolic trigonometric functions

The standard hyperbolic trigonometric functions are supported for complex numbers.

complex cosh(complex z)
Return the complex hyperbolic cosine of z, $\textrm{cosh}(z) = \frac{\exp(z) + \exp(-z)} {2}.$
Available since 2.28

complex sinh(complex z)
Return the complex hyperbolic sine of z, $\textrm{sinh}(z) = \frac{\displaystyle \exp(z) - \exp(-z)} {\displaystyle 2}.$
Available since 2.28

complex tanh(complex z)
Return the complex hyperbolic tangent of z, $\textrm{tanh}(z) \ = \ \frac{\textrm{sinh}(z)} {\textrm{cosh}(z)} \ = \ \frac{\displaystyle \exp(z) - \exp(-z)} {\displaystyle \exp(z) + \exp(-z)}.$
Available since 2.28

complex acosh(complex z)
Return the complex hyperbolic arc (inverse) cosine of z, $\textrm{acosh}(z) = \log(z + \sqrt{(z + 1)(z - 1)}).$
Available since 2.28

complex asinh(complex z)
Return the complex hyperbolic arc (inverse) sine of z, $\textrm{asinh}(z) = \log(z + \sqrt{1 + z^2}).$
Available since 2.28

complex atanh(complex z)
Return the complex hyperbolic arc (inverse) tangent of z, $\textrm{atanh}(z) = \frac{\log(1 + z) - \log(1 - z)} {2}.$
Available since 2.28