21.1 Uniform Distribution

21.1.1 Probability Density Function

If \(\alpha \in \mathbb{R}\) and \(\beta \in (\alpha,\infty)\), then for \(y \in [\alpha,\beta]\), \[ \text{Uniform}(y|\alpha,\beta) = \frac{1}{\beta - \alpha} . \]

21.1.2 Sampling Statement

y ~ uniform(alpha, beta)

Increment target log probability density with uniform_lpdf( y | alpha, beta) dropping constant additive terms.

21.1.3 Stan Functions

real uniform_lpdf(reals y | reals alpha, reals beta)
The log of the uniform density of y given lower bound alpha and upper bound beta

real uniform_cdf(reals y, reals alpha, reals beta)
The uniform cumulative distribution function of y given lower bound alpha and upper bound beta

real uniform_lcdf(reals y | reals alpha, reals beta)
The log of the uniform cumulative distribution function of y given lower bound alpha and upper bound beta

real uniform_lccdf(reals y | reals alpha, reals beta)
The log of the uniform complementary cumulative distribution function of y given lower bound alpha and upper bound beta

R uniform_rng(reals alpha, reals beta)
Generate a uniform variate with lower bound alpha and upper bound beta; may only be used in generated quantities block. For a description of argument and return types, see section vectorized PRNG functions.