18.2 Pareto Type 2 Distribution
18.2.1 Probability Density Function
If μ∈R, λ∈R+, and α∈R+, then for y≥μ, Pareto_Type_2(y|μ,λ,α)= αλ(1+y−μλ)−(α+1).
Note that the Lomax distribution is a Pareto Type 2 distribution with μ=0.
18.2.2 Sampling Statement
y ~
pareto_type_2
(mu, lambda, alpha)
Increment target log probability density with pareto_type_2_lpdf( y | mu, lambda, alpha)
dropping constant additive terms.
18.2.3 Stan Functions
real
pareto_type_2_lpdf
(reals y | reals mu, reals lambda, reals alpha)
The log of the Pareto Type 2 density of y given location mu, scale
lambda, and shape alpha
real
pareto_type_2_cdf
(reals y, reals mu, reals lambda, reals alpha)
The Pareto Type 2 cumulative distribution function of y given location
mu, scale lambda, and shape alpha
real
pareto_type_2_lcdf
(reals y | reals mu, reals lambda, reals alpha)
The log of the Pareto Type 2 cumulative distribution function of y
given location mu, scale lambda, and shape alpha
real
pareto_type_2_lccdf
(reals y | reals mu, reals lambda, reals alpha)
The log of the Pareto Type 2 complementary cumulative distribution
function of y given location mu, scale lambda, and shape alpha
R
pareto_type_2_rng
(reals mu, reals lambda, reals alpha)
Generate a Pareto Type 2 variate with location mu, scale lambda, and
shape alpha; may only be used in generated quantities block. For a
description of argument and return types, see section
vectorized PRNG functions.