4.5 Sorting functions

Sorting can be used to sort values or the indices of those values in either ascending or descending order. For example, if v is declared as a real array of size 3, with values \[ \text{v} = (1, -10.3, 20.987), \] then the various sort routines produce \[\begin{eqnarray*} \mathrm{sort\_asc(v)} & = & (-10.3,1,20.987) \\[4pt] \mathrm{sort\_desc(v)} & = & (20.987,1,-10.3) \\[4pt] \mathrm{sort\_indices\_asc(v)} & = & (2,1,3) \\[4pt] \text{sort\_indices\_desc(v)} & = & (3,1,2) \end{eqnarray*}\]

real[] sort_asc(real[] v)
Sort the elements of v in ascending order

int[] sort_asc(int[] v)
Sort the elements of v in ascending order

real[] sort_desc(real[] v)
Sort the elements of v in descending order

int[] sort_desc(int[] v)
Sort the elements of v in descending order

int[] sort_indices_asc(real[] v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending order.

int[] sort_indices_asc(int[] v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending order.

int[] sort_indices_desc(real[] v)
Return an array of indices between 1 and the size of v, sorted to index v in descending order.

int[] sort_indices_desc(int[] v)
Return an array of indices between 1 and the size of v, sorted to index v in descending order.

int rank(real[] v, int s)
Number of components of v less than v[s]

int rank(int[] v, int s)
Number of components of v less than v[s]