1#ifndef STAN_MATH_PRIM_PROB_EXP_MOD_NORMAL_CDF_HPP
2#define STAN_MATH_PRIM_PROB_EXP_MOD_NORMAL_CDF_HPP
26template <
typename T_y,
typename T_loc,
typename T_scale,
typename T_inv_scale,
28 T_y, T_loc, T_scale, T_inv_scale>* =
nullptr>
30 const T_y& y,
const T_loc& mu,
const T_scale& sigma,
31 const T_inv_scale& lambda) {
37 static constexpr const char* function =
"exp_mod_normal_cdf";
39 mu,
"Scale parameter", sigma,
"Inv_scale paramter",
43 T_sigma_ref sigma_ref = sigma;
44 T_lambda_ref lambda_ref = lambda;
49 decltype(
auto) lambda_val
66 return ops_partials.build(0.0);
70 return ops_partials.build(0.0);
75 = to_ref_if<is_any_autodiff_v<T_y, T_loc, T_scale>>(
inv(sigma_val));
76 const auto& diff =
to_ref(y_val - mu_val);
77 const auto& v =
to_ref(lambda_val * sigma_val);
79 const auto& scaled_diff_diff
80 = to_ref_if<is_any_autodiff_v<T_y, T_loc, T_scale, T_inv_scale>>(
82 const auto& erf_calc =
to_ref(0.5 * (1 +
erf(scaled_diff_diff)));
85 = to_ref_if<is_any_autodiff_v<T_y, T_loc, T_scale, T_inv_scale>>(
86 exp(0.5 *
square(v) - lambda_val * diff));
88 =
to_ref(0.5 + 0.5 *
erf(scaled_diff) - exp_term * erf_calc);
90 T_partials_return cdf(1.0);
91 if constexpr (
is_vector<
decltype(cdf_n)>::value) {
97 if constexpr (is_any_autodiff_v<T_y, T_loc, T_scale, T_inv_scale>) {
99 is_any_autodiff_v<T_y, T_loc, T_scale> && is_autodiff_v<T_inv_scale>)>(
101 if constexpr (is_any_autodiff_v<T_y, T_loc, T_scale>) {
102 constexpr bool need_deriv_refs
103 = is_any_autodiff_v<T_y, T_loc> && is_autodiff_v<T_scale>;
105 = to_ref_if<need_deriv_refs>(lambda_val * exp_term * erf_calc);
106 const auto& deriv_2 = to_ref_if<need_deriv_refs>(
108 const auto& sq_scaled_diff =
square(scaled_diff);
109 const auto& exp_m_sq_scaled_diff =
exp(-sq_scaled_diff);
110 const auto& deriv_3 = to_ref_if<need_deriv_refs>(
112 if constexpr (is_any_autodiff_v<T_y, T_loc>) {
114 =
to_ref_if<(is_autodiff_v<T_loc> && is_autodiff_v<T_y>)>(
115 cdf * (deriv_1 - deriv_2 + deriv_3) / cdf_n);
116 if constexpr (is_autodiff_v<T_y>) {
117 partials<0>(ops_partials) = deriv;
119 if constexpr (is_autodiff_v<T_loc>) {
120 partials<1>(ops_partials) = -deriv;
123 if constexpr (is_autodiff_v<T_scale>) {
124 edge<2>(ops_partials).partials_
126 * ((deriv_1 - deriv_2) * v
127 + (deriv_3 - deriv_2) * scaled_diff *
SQRT_TWO)
131 if constexpr (is_autodiff_v<T_inv_scale>) {
132 edge<3>(ops_partials).partials_
135 - (v * sigma_val - diff) * erf_calc)
139 return ops_partials.build(cdf);
require_all_not_t< is_nonscalar_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_not_nonscalar_prim_or_rev_kernel_expression_t
Require none of the types satisfy is_nonscalar_prim_or_rev_kernel_expression.
return_type_t< T_y_cl, T_loc_cl, T_scale_cl, T_inv_scale_cl > exp_mod_normal_cdf(const T_y_cl &y, const T_loc_cl &mu, const T_scale_cl &sigma, const T_inv_scale_cl &lambda)
Returns the double exponential cumulative density function.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
T to_ref_if(T &&a)
No-op that should be optimized away.
fvar< T > erf(const fvar< T > &x)
static constexpr double INV_SQRT_TWO
The value of 1 over the square root of 2, .
static constexpr double INV_SQRT_TWO_PI
The value of 1 over the square root of , .
static constexpr double NEGATIVE_INFTY
Negative infinity.
static constexpr double SQRT_TWO
The value of the square root of 2, .
auto as_value_column_array_or_scalar(T &&a)
Extract the value from an object and for eigen vectors and std::vectors convert to an eigen column ar...
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
void check_finite(const char *function, const char *name, const T_y &y)
Return true if all values in y are finite.
void check_not_nan(const char *function, const char *name, const T_y &y)
Check if y is not NaN.
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
fvar< T > inv(const fvar< T > &x)
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
fvar< T > square(const fvar< T > &x)
fvar< T > exp(const fvar< T > &x)
typename ref_type_if< is_autodiff_v< T >, T >::type ref_type_if_not_constant_t
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
If the input type T is either an eigen matrix with 1 column or 1 row at compile time or a standard ve...