1#ifndef STAN_MATH_OPENCL_PRIM_DOUBLE_EXP_MOD_NORMAL_CDF_HPP
2#define STAN_MATH_OPENCL_PRIM_DOUBLE_EXP_MOD_NORMAL_CDF_HPP
30template <
typename T_y_cl,
typename T_loc_cl,
typename T_scale_cl,
31 typename T_inv_scale_cl,
33 T_y_cl, T_loc_cl, T_scale_cl, T_inv_scale_cl>* =
nullptr,
35 T_inv_scale_cl>* =
nullptr>
37 const T_y_cl& y,
const T_loc_cl& mu,
const T_scale_cl& sigma,
38 const T_inv_scale_cl& lambda) {
39 static constexpr const char* function =
"exp_mod_normal_cdf(OpenCL)";
40 using T_partials_return
46 mu,
"Scale parameter", sigma);
47 const size_t N =
max_size(y, mu, sigma);
58 const auto& mu_val =
value_of(mu_col);
59 const auto& sigma_val =
value_of(sigma_col);
60 const auto& lambda_val =
value_of(lambda_col);
63 =
check_cl(function,
"Random variable", y_val,
"not NaN");
64 auto y_not_nan_expr = !isnan(y_val);
66 =
check_cl(function,
"Location parameter", mu_val,
"finite");
67 auto mu_finite_expr =
isfinite(mu_val);
68 auto check_sigma_positive_finite
69 =
check_cl(function,
"Scale parameter", sigma_val,
"positive finite");
70 auto sigma_positive_finite_expr = 0 < sigma_val &&
isfinite(sigma_val);
71 auto check_lambda_positive_finite
72 =
check_cl(function,
"Inv_cale parameter", lambda_val,
"positive finite");
73 auto lambda_positive_finite_expr = 0 < lambda_val &&
isfinite(lambda_val);
77 auto diff = y_val - mu_val;
81 auto erf_calc = 0.5 * (1.0 +
erf(scaled_diff_diff));
83 auto cdf_n = 0.5 + 0.5 *
erf(scaled_diff) -
elt_multiply(exp_term, erf_calc);
86 auto exp_term_2 =
exp(-
square(scaled_diff_diff));
92 auto mu_deriv1 =
elt_divide(deriv_2 - deriv_1 - deriv_3, cdf_n);
111 results(check_y_not_nan, check_mu_finite, check_sigma_positive_finite,
112 check_lambda_positive_finite, any_y_neg_inf_cl, cdf_cl, y_deriv_cl,
113 mu_deriv_cl, sigma_deriv_cl, lambda_deriv_cl)
115 y_not_nan_expr, mu_finite_expr, sigma_positive_finite_expr,
116 lambda_positive_finite_expr, any_y_neg_inf, cdf_expr,
118 T_inv_scale_cl>::value>(cdf_n),
135 auto y_deriv = -mu_deriv;
142 results(y_deriv_cl, mu_deriv_cl, sigma_deriv_cl, lambda_deriv_cl)
150 partials<0>(ops_partials) = std::move(y_deriv_cl);
153 partials<1>(ops_partials) = std::move(mu_deriv_cl);
156 partials<2>(ops_partials) = std::move(sigma_deriv_cl);
159 partials<3>(ops_partials) = std::move(lambda_deriv_cl);
162 return ops_partials.build(cdf);
Represents an arithmetic matrix on the OpenCL device.
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
auto colwise_prod(T &&a)
Column wise product - reduction of a kernel generator expression.
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
auto colwise_max(T &&a)
Column wise max - reduction of a kernel generator expression.
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
return_type_t< T_y_cl, T_loc_cl, T_scale_cl, T_inv_scale_cl > exp_mod_normal_cdf(const T_y_cl &y, const T_loc_cl &mu, const T_scale_cl &sigma, const T_inv_scale_cl &lambda)
Returns the double exponential cumulative density function.
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
require_any_not_t< is_stan_scalar< std::decay_t< Types > >... > require_any_not_stan_scalar_t
Require at least one of the types do not satisfy is_stan_scalar.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
value_type_t< T > prod(const T &m)
Calculates product of given kernel generator expression elements.
T value_of(const fvar< T > &v)
Return the value of the specified variable.
fvar< T > erf(const fvar< T > &x)
static constexpr double INV_SQRT_TWO
The value of 1 over the square root of 2, .
static constexpr double INV_SQRT_TWO_PI
The value of 1 over the square root of , .
static constexpr double NEGATIVE_INFTY
Negative infinity.
static constexpr double SQRT_TWO
The value of the square root of 2, .
T1 static_select(T1 &&a, T2 &&b)
Returns one of the arguments that can be of different type, depending on the compile time condition.
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
fvar< T > square(const fvar< T > &x)
fvar< T > exp(const fvar< T > &x)
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.
Metaprogramming struct to detect whether a given type is constant in the mathematical sense (not the ...
Extends std::true_type when instantiated with zero or more template parameters, all of which extend t...