19.2 Beta Proportion Distribution
19.2.1 Probability Density Function
If μ∈(0,1) and κ∈R+, then for θ∈(0,1), Beta_Proportion(θ|μ,κ)=1B(μκ,(1−μ)κ)θμκ−1(1−θ)(1−μ)κ−1, where the beta function B() is as defined in section combinatorial functions.
Warning: If θ=0 or θ=1, then the probability is 0 and the log probability is −∞. Similarly, the distribution requires μ∈(0,1) and strictly positive parameter, κ>0.
19.2.2 Sampling Statement
theta ~
beta_proportion
(mu, kappa)
Increment target log probability density with beta_proportion_lpdf( theta | mu, kappa)
dropping constant additive terms.
19.2.3 Stan Functions
real
beta_proportion_lpdf
(reals theta | reals mu, reals kappa)
The log of the beta_proportion density of theta
in (0,1) given
mean mu and precision kappa
real
beta_proportion_lcdf
(reals theta | reals mu, reals kappa)
The log of the beta_proportion cumulative distribution function of
theta
in (0,1) given mean mu and precision kappa
real
beta_proportion_lccdf
(reals theta | reals mu, reals kappa)
The log of the beta_proportion complementary cumulative distribution
function of theta
in (0,1) given mean mu and precision kappa
R
beta_proportion_rng
(reals mu, reals kappa)
Generate a beta_proportion variate with mean mu and precision kappa;
may only be used in generated quantities block. For a description of
argument and return types, see section vectorized PRNG functions.