This is an old version, view current version.

25.1 Wishart Distribution

25.1.1 Probability Density Function

If KN, ν(K1,), and SRK×K is symmetric and positive definite, then for symmetric and positive-definite WRK×K, Wishart(W|ν,S)=12νK/2 1ΓK(ν2) |S|ν/2 |W|(νK1)/2 exp(12 tr(S1W)), where tr() is the matrix trace function, and ΓK() is the multivariate Gamma function, ΓK(x)=1πK(K1)/4 Kk=1Γ(x+1k2).

25.1.2 Sampling Statement

W ~ wishart(nu, Sigma)

Increment target log probability density with wishart_lpdf( W | nu, Sigma) dropping constant additive terms.

25.1.3 Stan Functions

real wishart_lpdf(matrix W | real nu, matrix Sigma)
The log of the Wishart density for symmetric and positive-definite matrix W given degrees of freedom nu and symmetric and positive-definite scale matrix Sigma

matrix wishart_rng(real nu, matrix Sigma)
Generate a Wishart variate with degrees of freedom nu and symmetric and positive-definite scale matrix Sigma; may only be used in generated quantities block