16.1 Lognormal Distribution
16.1.1 Probability Density Function
If μ∈R and σ∈R+, then for y∈R+, LogNormal(y|μ,σ)=1√2π σ1y exp(−12(logy−μσ)2).
16.1.2 Sampling Statement
y ~
lognormal
(mu, sigma)
Increment target log probability density with lognormal_lpdf( y | mu, sigma)
dropping constant additive terms.
16.1.3 Stan Functions
real
lognormal_lpdf
(reals y | reals mu, reals sigma)
The log of the lognormal density of y given location mu and scale
sigma
real
lognormal_cdf
(reals y, reals mu, reals sigma)
The cumulative lognormal distribution function of y given location mu
and scale sigma
real
lognormal_lcdf
(reals y | reals mu, reals sigma)
The log of the lognormal cumulative distribution function of y given
location mu and scale sigma
real
lognormal_lccdf
(reals y | reals mu, reals sigma)
The log of the lognormal complementary cumulative distribution
function of y given location mu and scale sigma
R
lognormal_rng
(reals mu, reals beta)
Generate a lognormal variate with location mu and scale sigma; may
only be used in generated quantities block. For a description of
argument and return types, see section vectorized PRNG functions.