The $pathfinder()
method of a CmdStanModel
object runs
Stan's Pathfinder algorithms. Pathfinder is a variational method for
approximately sampling from differentiable log densities. Starting from a
random initialization, Pathfinder locates normal approximations
to the target density along a quasi-Newton optimization path in
the unconstrained space, with local covariance estimated using
the negative inverse Hessian estimates produced by the LBFGS
optimizer. Pathfinder selects the normal approximation with the
lowest estimated Kullback-Leibler (KL) divergence to the true
posterior. Finally Pathfinder draws from that normal
approximation and returns the draws transformed to the
constrained scale. See the
CmdStan User’s Guide
for more details.
Any argument left as NULL
will default to the default value used by the
installed version of CmdStan
pathfinder(
data = NULL,
seed = NULL,
refresh = NULL,
init = NULL,
save_latent_dynamics = FALSE,
output_dir = getOption("cmdstanr_output_dir"),
output_basename = NULL,
sig_figs = NULL,
opencl_ids = NULL,
num_threads = NULL,
init_alpha = NULL,
tol_obj = NULL,
tol_rel_obj = NULL,
tol_grad = NULL,
tol_rel_grad = NULL,
tol_param = NULL,
history_size = NULL,
single_path_draws = NULL,
draws = NULL,
num_paths = 4,
max_lbfgs_iters = NULL,
num_elbo_draws = NULL,
save_single_paths = NULL,
psis_resample = NULL,
calculate_lp = NULL,
show_messages = TRUE,
show_exceptions = TRUE,
save_cmdstan_config = NULL
)
(multiple options) The data to use for the variables specified in the data block of the Stan program. One of the following:
A named list of R objects with the names corresponding to variables
declared in the data block of the Stan program. Internally this list is
then written to JSON for CmdStan using write_stan_json()
. See
write_stan_json()
for details on the conversions performed on R objects
before they are passed to Stan.
A path to a data file compatible with CmdStan (JSON or R dump). See the appendices in the CmdStan guide for details on using these formats.
NULL
or an empty list if the Stan program has no data block.
(positive integer(s)) A seed for the (P)RNG to pass to CmdStan.
In the case of multi-chain sampling the single seed
will automatically be
augmented by the the run (chain) ID so that each chain uses a different
seed. The exception is the transformed data block, which defaults to using
same seed for all chains so that the same data is generated for all chains
if RNG functions are used. The only time seed
should be specified as a
vector (one element per chain) is if RNG functions are used in transformed
data and the goal is to generate different data for each chain.
(non-negative integer) The number of iterations between
printed screen updates. If refresh = 0
, only error messages will be
printed.
(multiple options) The initialization method to use for the variables declared in the parameters block of the Stan program. One of the following:
A real number x>0
. This initializes all parameters randomly between
[-x,x]
on the unconstrained parameter space.;
The number 0
. This initializes all parameters to 0
;
A character vector of paths (one per chain) to JSON or Rdump files
containing initial values for all or some parameters. See
write_stan_json()
to write R objects to JSON files compatible with
CmdStan.
A list of lists containing initial values for all or some parameters. For MCMC the list should contain a sublist for each chain. For other model fitting methods there should be just one sublist. The sublists should have named elements corresponding to the parameters for which you are specifying initial values. See Examples.
A function that returns a single list with names corresponding to the
parameters for which you are specifying initial values. The function can
take no arguments or a single argument chain_id
. For MCMC, if the
function has argument chain_id
it will be supplied with the chain id
(from 1 to number of chains) when called to generate the initial values.
See
Examples.
A CmdStanMCMC
, CmdStanMLE
, CmdStanVB
, CmdStanPathfinder
,
or CmdStanLaplace
fit object.
If the fit object's parameters are only a subset of the model
parameters then the other parameters will be drawn by Stan's default
initialization. The fit object must have at least some parameters that are the
same name and dimensions as the current Stan model. For the sample
and
pathfinder
method, if the fit object has fewer draws than the requested
number of chains/paths then the inits will be drawn using sampling with
replacement. Otherwise sampling without replacement will be used.
When a CmdStanPathfinder
fit object is used as the init, if
. psis_resample
was set to FALSE
and calculate_lp
was
set to TRUE
(default), then resampling without replacement with Pareto
smoothed weights will be used. If psis_resample
was set to TRUE
or
calculate_lp
was set to FALSE
then sampling without replacement with
uniform weights will be used to select the draws.
PSIS resampling is used to select the draws for CmdStanVB
,
and CmdStanLaplace
fit objects.
A type inheriting from posterior::draws
. If the draws object has less
samples than the number of requested chains/paths then the inits will be
drawn using sampling with replacement. Otherwise sampling without
replacement will be used. If the draws object's parameters are only a subset
of the model parameters then the other parameters will be drawn by Stan's
default initialization. The fit object must have at least some parameters
that are the same name and dimensions as the current Stan model.
(logical) Should auxiliary diagnostic information
about the latent dynamics be written to temporary diagnostic CSV files?
This argument replaces CmdStan's diagnostic_file
argument and the content
written to CSV is controlled by the user's CmdStan installation and not
CmdStanR (for some algorithms no content may be written). The default is
FALSE
, which is appropriate for almost every use case. To save the
temporary files created when save_latent_dynamics=TRUE
see the
$save_latent_dynamics_files()
method.
(string) A path to a directory where CmdStan should write
its output CSV files. For MCMC there will be one file per chain; for other
methods there will be a single file. For interactive use this can typically
be left at NULL
(temporary directory) since CmdStanR makes the CmdStan
output (posterior draws and diagnostics) available in R via methods of the
fitted model objects. This can be set for an entire R session using
options(cmdstanr_output_dir)
. The behavior of output_dir
is as follows:
If NULL
(the default), then the CSV files are written to a temporary
directory and only saved permanently if the user calls one of the $save_*
methods of the fitted model object (e.g.,
$save_output_files()
). These temporary
files are removed when the fitted model object is garbage collected (manually or automatically).
If a path, then the files are created in output_dir
with names
corresponding to the defaults used by $save_output_files()
.
(string) A string to use as a prefix for the names of
the output CSV files of CmdStan. If NULL
(the default), the basename of
the output CSV files will be comprised from the model name, timestamp, and
5 random characters.
(positive integer) The number of significant figures used
when storing the output values. By default, CmdStan represent the output
values with 6 significant figures. The upper limit for sig_figs
is 18.
Increasing this value will result in larger output CSV files and thus an
increased usage of disk space.
(integer vector of length 2) The platform and device IDs of
the OpenCL device to use for fitting. The model must be compiled with
cpp_options = list(stan_opencl = TRUE)
for this argument to have an
effect.
(positive integer) If the model was
compiled with threading support, the number of
threads to use in parallelized sections (e.g., for multi-path pathfinder
as well as reduce_sum
).
(positive real) The initial step size parameter.
(positive real) Convergence tolerance on changes in objective function value.
(positive real) Convergence tolerance on relative changes in objective function value.
(positive real) Convergence tolerance on the norm of the gradient.
(positive real) Convergence tolerance on the relative norm of the gradient.
(positive real) Convergence tolerance on changes in parameter value.
(positive integer) The size of the history used when approximating the Hessian.
(positive integer) Number of draws a single
pathfinder should return. The number of draws PSIS sampling samples from
will be equal to single_path_draws * num_paths
.
(positive integer) Number of draws to return after performing
pareto smooted importance sampling (PSIS). This should be smaller than
single_path_draws * num_paths
(future versions of CmdStan will throw a
warning).
(positive integer) Number of single pathfinders to run.
(positive integer) The maximum number of iterations for LBFGS.
(positive integer) Number of draws to make when calculating the ELBO of the approximation at each iteration of LBFGS.
(logical) Whether to save the results of single pathfinder runs in multi-pathfinder.
(logical) Whether to perform pareto smoothed importance sampling.
If TRUE
, the number of draws returned will be equal to draws
.
If FALSE
, the number of draws returned will be equal to single_path_draws * num_paths
.
(logical) Whether to calculate the log probability of the draws.
If TRUE
, the log probability will be calculated and given in the output.
If FALSE
, the log probability will only be returned for draws used to determine the
ELBO in the pathfinder steps. All other draws will have a log probability of NA
.
A value of FALSE
will also turn off pareto smoothed importance sampling as the
lp calculation is needed for PSIS.
(logical) When TRUE
(the default), prints all output
during the execution process, such as iteration numbers and elapsed times.
If the output is silenced then the $output()
method
of the resulting fit object can be used to display the silenced messages.
(logical) When TRUE
(the default), prints all
informational messages, for example rejection of the current proposal.
Disable if you wish to silence these messages, but this is not usually
recommended unless you are very confident that the model is correct up to
numerical error. If the messages are silenced then the
$output()
method of the resulting fit object can be
used to display the silenced messages.
(logical) When TRUE
(the default), call CmdStan
with argument "output save_config=1"
to save a json file which contains
the argument tree and extra information (equivalent to the output CSV file
header). This option is only available in CmdStan 2.34.0 and later.
A CmdStanPathfinder
object.
The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.
The Stan and CmdStan documentation:
Stan documentation: mc-stan.org/users/documentation
CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide
Other CmdStanModel methods:
model-method-check_syntax
,
model-method-compile
,
model-method-diagnose
,
model-method-expose_functions
,
model-method-format
,
model-method-generate-quantities
,
model-method-laplace
,
model-method-optimize
,
model-method-sample
,
model-method-sample_mpi
,
model-method-variables
,
model-method-variational
# \dontrun{
library(cmdstanr)
library(posterior)
library(bayesplot)
color_scheme_set("brightblue")
# Set path to CmdStan
# (Note: if you installed CmdStan via install_cmdstan() with default settings
# then setting the path is unnecessary but the default below should still work.
# Otherwise use the `path` argument to specify the location of your
# CmdStan installation.)
set_cmdstan_path(path = NULL)
#> CmdStan path set to: /Users/jgabry/.cmdstan/cmdstan-2.35.0
# Create a CmdStanModel object from a Stan program,
# here using the example model that comes with CmdStan
file <- file.path(cmdstan_path(), "examples/bernoulli/bernoulli.stan")
mod <- cmdstan_model(file)
mod$print()
#> data {
#> int<lower=0> N;
#> array[N] int<lower=0, upper=1> y;
#> }
#> parameters {
#> real<lower=0, upper=1> theta;
#> }
#> model {
#> theta ~ beta(1, 1); // uniform prior on interval 0,1
#> y ~ bernoulli(theta);
#> }
# Print with line numbers. This can be set globally using the
# `cmdstanr_print_line_numbers` option.
mod$print(line_numbers = TRUE)
#> 1: data {
#> 2: int<lower=0> N;
#> 3: array[N] int<lower=0, upper=1> y;
#> 4: }
#> 5: parameters {
#> 6: real<lower=0, upper=1> theta;
#> 7: }
#> 8: model {
#> 9: theta ~ beta(1, 1); // uniform prior on interval 0,1
#> 10: y ~ bernoulli(theta);
#> 11: }
# Data as a named list (like RStan)
stan_data <- list(N = 10, y = c(0,1,0,0,0,0,0,0,0,1))
# Run MCMC using the 'sample' method
fit_mcmc <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
parallel_chains = 2
)
#> Running MCMC with 2 parallel chains...
#>
#> Chain 1 Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1 Iteration: 100 / 2000 [ 5%] (Warmup)
#> Chain 1 Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1 Iteration: 300 / 2000 [ 15%] (Warmup)
#> Chain 1 Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1 Iteration: 500 / 2000 [ 25%] (Warmup)
#> Chain 1 Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1 Iteration: 700 / 2000 [ 35%] (Warmup)
#> Chain 1 Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1 Iteration: 900 / 2000 [ 45%] (Warmup)
#> Chain 1 Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1 Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1 Iteration: 1100 / 2000 [ 55%] (Sampling)
#> Chain 1 Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1 Iteration: 1300 / 2000 [ 65%] (Sampling)
#> Chain 1 Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1 Iteration: 1500 / 2000 [ 75%] (Sampling)
#> Chain 1 Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1 Iteration: 1700 / 2000 [ 85%] (Sampling)
#> Chain 1 Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1 Iteration: 1900 / 2000 [ 95%] (Sampling)
#> Chain 1 Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2 Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2 Iteration: 100 / 2000 [ 5%] (Warmup)
#> Chain 2 Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2 Iteration: 300 / 2000 [ 15%] (Warmup)
#> Chain 2 Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2 Iteration: 500 / 2000 [ 25%] (Warmup)
#> Chain 2 Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2 Iteration: 700 / 2000 [ 35%] (Warmup)
#> Chain 2 Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2 Iteration: 900 / 2000 [ 45%] (Warmup)
#> Chain 2 Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2 Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2 Iteration: 1100 / 2000 [ 55%] (Sampling)
#> Chain 2 Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2 Iteration: 1300 / 2000 [ 65%] (Sampling)
#> Chain 2 Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2 Iteration: 1500 / 2000 [ 75%] (Sampling)
#> Chain 2 Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2 Iteration: 1700 / 2000 [ 85%] (Sampling)
#> Chain 2 Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2 Iteration: 1900 / 2000 [ 95%] (Sampling)
#> Chain 2 Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1 finished in 0.0 seconds.
#> Chain 2 finished in 0.0 seconds.
#>
#> Both chains finished successfully.
#> Mean chain execution time: 0.0 seconds.
#> Total execution time: 0.2 seconds.
#>
# Use 'posterior' package for summaries
fit_mcmc$summary()
#> # A tibble: 2 × 10
#> variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 lp__ -7.30 -7.00 0.811 0.344 -8.83 -6.75 1.00 702. 776.
#> 2 theta 0.254 0.238 0.125 0.124 0.0807 0.483 1.00 634. 580.
# Check sampling diagnostics
fit_mcmc$diagnostic_summary()
#> $num_divergent
#> [1] 0 0
#>
#> $num_max_treedepth
#> [1] 0 0
#>
#> $ebfmi
#> [1] 1.1148699 0.8012192
#>
# Get posterior draws
draws <- fit_mcmc$draws()
print(draws)
#> # A draws_array: 1000 iterations, 2 chains, and 2 variables
#> , , variable = lp__
#>
#> chain
#> iteration 1 2
#> 1 -7.0 -6.8
#> 2 -7.9 -6.9
#> 3 -7.4 -6.8
#> 4 -6.7 -6.8
#> 5 -6.9 -10.2
#>
#> , , variable = theta
#>
#> chain
#> iteration 1 2
#> 1 0.17 0.23
#> 2 0.46 0.18
#> 3 0.41 0.28
#> 4 0.25 0.23
#> 5 0.18 0.62
#>
#> # ... with 995 more iterations
# Convert to data frame using posterior::as_draws_df
as_draws_df(draws)
#> # A draws_df: 1000 iterations, 2 chains, and 2 variables
#> lp__ theta
#> 1 -7.0 0.17
#> 2 -7.9 0.46
#> 3 -7.4 0.41
#> 4 -6.7 0.25
#> 5 -6.9 0.18
#> 6 -6.9 0.33
#> 7 -7.2 0.15
#> 8 -6.8 0.29
#> 9 -6.8 0.24
#> 10 -6.8 0.24
#> # ... with 1990 more draws
#> # ... hidden reserved variables {'.chain', '.iteration', '.draw'}
# Plot posterior using bayesplot (ggplot2)
mcmc_hist(fit_mcmc$draws("theta"))
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# For models fit using MCMC, if you like working with RStan's stanfit objects
# then you can create one with rstan::read_stan_csv()
# stanfit <- rstan::read_stan_csv(fit_mcmc$output_files())
# Run 'optimize' method to get a point estimate (default is Stan's LBFGS algorithm)
# and also demonstrate specifying data as a path to a file instead of a list
my_data_file <- file.path(cmdstan_path(), "examples/bernoulli/bernoulli.data.json")
fit_optim <- mod$optimize(data = my_data_file, seed = 123)
#> Initial log joint probability = -16.144
#> Iter log prob ||dx|| ||grad|| alpha alpha0 # evals Notes
#> 6 -5.00402 0.000246518 8.73164e-07 1 1 9
#> Optimization terminated normally:
#> Convergence detected: relative gradient magnitude is below tolerance
#> Finished in 0.1 seconds.
fit_optim$summary()
#> # A tibble: 2 × 2
#> variable estimate
#> <chr> <dbl>
#> 1 lp__ -5.00
#> 2 theta 0.2
# Run 'optimize' again with 'jacobian=TRUE' and then draw from Laplace approximation
# to the posterior
fit_optim <- mod$optimize(data = my_data_file, jacobian = TRUE)
#> Initial log joint probability = -8.03582
#> Iter log prob ||dx|| ||grad|| alpha alpha0 # evals Notes
#> 5 -6.74802 0.000232501 1.48433e-06 1 1 8
#> Optimization terminated normally:
#> Convergence detected: relative gradient magnitude is below tolerance
#> Finished in 0.1 seconds.
fit_laplace <- mod$laplace(data = my_data_file, mode = fit_optim, draws = 2000)
#> Calculating Hessian
#> Calculating inverse of Cholesky factor
#> Generating draws
#> iteration: 0
#> iteration: 100
#> iteration: 200
#> iteration: 300
#> iteration: 400
#> iteration: 500
#> iteration: 600
#> iteration: 700
#> iteration: 800
#> iteration: 900
#> iteration: 1000
#> iteration: 1100
#> iteration: 1200
#> iteration: 1300
#> iteration: 1400
#> iteration: 1500
#> iteration: 1600
#> iteration: 1700
#> iteration: 1800
#> iteration: 1900
#> Finished in 0.1 seconds.
fit_laplace$summary()
#> # A tibble: 3 × 7
#> variable mean median sd mad q5 q95
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 lp__ -7.24 -6.98 0.696 0.318 -8.64 -6.75
#> 2 lp_approx__ -0.504 -0.233 0.703 0.320 -1.97 -0.00198
#> 3 theta 0.266 0.248 0.123 0.122 0.100 0.498
# Run 'variational' method to use ADVI to approximate posterior
fit_vb <- mod$variational(data = stan_data, seed = 123)
#> ------------------------------------------------------------
#> EXPERIMENTAL ALGORITHM:
#> This procedure has not been thoroughly tested and may be unstable
#> or buggy. The interface is subject to change.
#> ------------------------------------------------------------
#> Gradient evaluation took 1.2e-05 seconds
#> 1000 transitions using 10 leapfrog steps per transition would take 0.12 seconds.
#> Adjust your expectations accordingly!
#> Begin eta adaptation.
#> Iteration: 1 / 250 [ 0%] (Adaptation)
#> Iteration: 50 / 250 [ 20%] (Adaptation)
#> Iteration: 100 / 250 [ 40%] (Adaptation)
#> Iteration: 150 / 250 [ 60%] (Adaptation)
#> Iteration: 200 / 250 [ 80%] (Adaptation)
#> Success! Found best value [eta = 1] earlier than expected.
#> Begin stochastic gradient ascent.
#> iter ELBO delta_ELBO_mean delta_ELBO_med notes
#> 100 -6.164 1.000 1.000
#> 200 -6.225 0.505 1.000
#> 300 -6.186 0.339 0.010 MEDIAN ELBO CONVERGED
#> Drawing a sample of size 1000 from the approximate posterior...
#> COMPLETED.
#> Finished in 0.1 seconds.
fit_vb$summary()
#> # A tibble: 3 × 7
#> variable mean median sd mad q5 q95
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 lp__ -7.14 -6.93 0.528 0.247 -8.21 -6.75
#> 2 lp_approx__ -0.520 -0.244 0.740 0.326 -1.90 -0.00227
#> 3 theta 0.251 0.236 0.107 0.108 0.100 0.446
mcmc_hist(fit_vb$draws("theta"))
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# Run 'pathfinder' method, a new alternative to the variational method
fit_pf <- mod$pathfinder(data = stan_data, seed = 123)
#> Path [1] :Initial log joint density = -18.273334
#> Path [1] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes
#> 5 -6.748e+00 7.082e-04 1.432e-05 1.000e+00 1.000e+00 126 -6.145e+00 -6.145e+00
#> Path [1] :Best Iter: [5] ELBO (-6.145070) evaluations: (126)
#> Path [2] :Initial log joint density = -19.192715
#> Path [2] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes
#> 5 -6.748e+00 2.015e-04 2.228e-06 1.000e+00 1.000e+00 126 -6.223e+00 -6.223e+00
#> Path [2] :Best Iter: [2] ELBO (-6.170358) evaluations: (126)
#> Path [3] :Initial log joint density = -6.774820
#> Path [3] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes
#> 4 -6.748e+00 1.137e-04 2.596e-07 1.000e+00 1.000e+00 101 -6.178e+00 -6.178e+00
#> Path [3] :Best Iter: [4] ELBO (-6.177909) evaluations: (101)
#> Path [4] :Initial log joint density = -7.949193
#> Path [4] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes
#> 5 -6.748e+00 2.145e-04 1.301e-06 1.000e+00 1.000e+00 126 -6.197e+00 -6.197e+00
#> Path [4] :Best Iter: [5] ELBO (-6.197118) evaluations: (126)
#> Total log probability function evaluations:4379
#> Finished in 0.2 seconds.
fit_pf$summary()
#> # A tibble: 3 × 7
#> variable mean median sd mad q5 q95
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 lp_approx__ -1.07 -0.727 0.945 0.311 -2.91 -0.450
#> 2 lp__ -7.25 -6.97 0.753 0.308 -8.78 -6.75
#> 3 theta 0.256 0.245 0.119 0.123 0.0824 0.462
mcmc_hist(fit_pf$draws("theta"))
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# Run 'pathfinder' again with more paths, fewer draws per path,
# better covariance approximation, and fewer LBFGSs iterations
fit_pf <- mod$pathfinder(data = stan_data, num_paths=10, single_path_draws=40,
history_size=50, max_lbfgs_iters=100)
#> Warning: Number of PSIS draws is larger than the total number of draws returned by the single Pathfinders. This is likely unintentional and leads to re-sampling from the same draws.
#> Path [1] :Initial log joint density = -6.748022
#> Path [1] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes
#> 2 -6.748e+00 3.660e-04 9.724e-08 1.000e+00 1.000e+00 51 -6.176e+00 -6.176e+00
#> Path [1] :Best Iter: [2] ELBO (-6.176168) evaluations: (51)
#> Path [2] :Initial log joint density = -6.810066
#> Path [2] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes
#> 4 -6.748e+00 3.617e-04 1.786e-06 1.000e+00 1.000e+00 101 -6.202e+00 -6.202e+00
#> Path [2] :Best Iter: [4] ELBO (-6.201718) evaluations: (101)
#> Path [3] :Initial log joint density = -7.451465
#> Path [3] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes
#> 5 -6.748e+00 1.012e-04 3.850e-07 1.000e+00 1.000e+00 126 -6.225e+00 -6.225e+00
#> Path [3] :Best Iter: [4] ELBO (-6.186839) evaluations: (126)
#> Path [4] :Initial log joint density = -18.081755
#> Path [4] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes
#> 5 -6.748e+00 8.265e-04 1.795e-05 1.000e+00 1.000e+00 126 -6.189e+00 -6.189e+00
#> Path [4] :Best Iter: [5] ELBO (-6.188909) evaluations: (126)
#> Path [5] :Initial log joint density = -7.075204
#> Path [5] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes
#> 4 -6.748e+00 2.957e-03 5.925e-05 1.000e+00 1.000e+00 101 -6.268e+00 -6.268e+00
#> Path [5] :Best Iter: [3] ELBO (-6.207400) evaluations: (101)
#> Path [6] :Initial log joint density = -6.950110
#> Path [6] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes
#> 4 -6.748e+00 1.668e-03 2.284e-05 1.000e+00 1.000e+00 101 -6.226e+00 -6.226e+00
#> Path [6] :Best Iter: [3] ELBO (-6.178796) evaluations: (101)
#> Path [7] :Initial log joint density = -10.742807
#> Path [7] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes
#> 5 -6.748e+00 8.636e-04 1.223e-05 1.000e+00 1.000e+00 126 -6.253e+00 -6.253e+00
#> Path [7] :Best Iter: [2] ELBO (-6.147651) evaluations: (126)
#> Path [8] :Initial log joint density = -8.722796
#> Path [8] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes
#> 5 -6.748e+00 3.316e-04 2.692e-06 1.000e+00 1.000e+00 126 -6.185e+00 -6.185e+00
#> Path [8] :Best Iter: [5] ELBO (-6.185211) evaluations: (126)
#> Path [9] :Initial log joint density = -6.756313
#> Path [9] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes
#> 3 -6.748e+00 1.308e-03 4.802e-05 1.000e+00 1.000e+00 76 -6.202e+00 -6.202e+00
#> Path [9] :Best Iter: [3] ELBO (-6.201510) evaluations: (76)
#> Path [10] :Initial log joint density = -7.046682
#> Path [10] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes
#> 4 -6.748e+00 2.661e-03 4.972e-05 1.000e+00 1.000e+00 101 -6.199e+00 -6.199e+00
#> Path [10] :Best Iter: [2] ELBO (-6.191324) evaluations: (101)
#> Total log probability function evaluations:1185
#> Finished in 0.1 seconds.
# Specifying initial values as a function
fit_mcmc_w_init_fun <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
refresh = 0,
init = function() list(theta = runif(1))
)
#> Running MCMC with 2 sequential chains...
#>
#> Chain 1 finished in 0.0 seconds.
#> Chain 2 finished in 0.0 seconds.
#>
#> Both chains finished successfully.
#> Mean chain execution time: 0.0 seconds.
#> Total execution time: 0.3 seconds.
#>
fit_mcmc_w_init_fun_2 <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
refresh = 0,
init = function(chain_id) {
# silly but demonstrates optional use of chain_id
list(theta = 1 / (chain_id + 1))
}
)
#> Running MCMC with 2 sequential chains...
#>
#> Chain 1 finished in 0.0 seconds.
#> Chain 2 finished in 0.0 seconds.
#>
#> Both chains finished successfully.
#> Mean chain execution time: 0.0 seconds.
#> Total execution time: 0.3 seconds.
#>
fit_mcmc_w_init_fun_2$init()
#> [[1]]
#> [[1]]$theta
#> [1] 0.5
#>
#>
#> [[2]]
#> [[2]]$theta
#> [1] 0.3333333
#>
#>
# Specifying initial values as a list of lists
fit_mcmc_w_init_list <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
refresh = 0,
init = list(
list(theta = 0.75), # chain 1
list(theta = 0.25) # chain 2
)
)
#> Running MCMC with 2 sequential chains...
#>
#> Chain 1 finished in 0.0 seconds.
#> Chain 2 finished in 0.0 seconds.
#>
#> Both chains finished successfully.
#> Mean chain execution time: 0.0 seconds.
#> Total execution time: 0.3 seconds.
#>
fit_optim_w_init_list <- mod$optimize(
data = stan_data,
seed = 123,
init = list(
list(theta = 0.75)
)
)
#> Initial log joint probability = -11.6657
#> Iter log prob ||dx|| ||grad|| alpha alpha0 # evals Notes
#> 6 -5.00402 0.000237915 9.55309e-07 1 1 9
#> Optimization terminated normally:
#> Convergence detected: relative gradient magnitude is below tolerance
#> Finished in 0.2 seconds.
fit_optim_w_init_list$init()
#> [[1]]
#> [[1]]$theta
#> [1] 0.75
#>
#>
# }