Automatic Differentiation
 
Loading...
Searching...
No Matches
student_t_cdf.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_PROB_STUDENT_T_CDF_HPP
2#define STAN_MATH_PRIM_PROB_STUDENT_T_CDF_HPP
3
17#include <cmath>
18
19namespace stan {
20namespace math {
21
22template <typename T_y, typename T_dof, typename T_loc, typename T_scale>
24 const T_dof& nu,
25 const T_loc& mu,
26 const T_scale& sigma) {
27 using T_partials_return = partials_return_t<T_y, T_dof, T_loc, T_scale>;
28 using T_y_ref = ref_type_t<T_y>;
29 using T_nu_ref = ref_type_t<T_dof>;
30 using T_mu_ref = ref_type_t<T_loc>;
31 using T_sigma_ref = ref_type_t<T_scale>;
32 using std::exp;
33 using std::pow;
34 static constexpr const char* function = "student_t_cdf";
35 T_y_ref y_ref = y;
36 T_nu_ref nu_ref = nu;
37 T_mu_ref mu_ref = mu;
38 T_sigma_ref sigma_ref = sigma;
39 check_not_nan(function, "Random variable", y_ref);
40 check_positive_finite(function, "Degrees of freedom parameter", nu_ref);
41 check_finite(function, "Location parameter", mu_ref);
42 check_positive_finite(function, "Scale parameter", sigma_ref);
43
44 if (size_zero(y, nu, mu, sigma)) {
45 return 1.0;
46 }
47
48 T_partials_return P(1.0);
49 auto ops_partials
50 = make_partials_propagator(y_ref, nu_ref, mu_ref, sigma_ref);
51 scalar_seq_view<T_y> y_vec(y_ref);
52 scalar_seq_view<T_nu_ref> nu_vec(nu_ref);
53 scalar_seq_view<T_mu_ref> mu_vec(mu_ref);
54 scalar_seq_view<T_sigma_ref> sigma_vec(sigma_ref);
55 size_t N = max_size(y, nu, mu, sigma);
56
57 // Explicit return for extreme values
58 // The gradients are technically ill-defined, but treated as zero
59 for (size_t i = 0; i < stan::math::size(y); i++) {
60 if (y_vec.val(i) == NEGATIVE_INFTY) {
61 return ops_partials.build(0.0);
62 }
63 }
64
65 T_partials_return digammaHalf = 0;
66
67 VectorBuilder<!is_constant_all<T_dof>::value, T_partials_return, T_dof>
68 digamma_vec(math::size(nu));
69 VectorBuilder<!is_constant_all<T_dof>::value, T_partials_return, T_dof>
70 digammaNu_vec(math::size(nu));
71 VectorBuilder<!is_constant_all<T_dof>::value, T_partials_return, T_dof>
72 digammaNuPlusHalf_vec(math::size(nu));
73
75 digammaHalf = digamma(0.5);
76
77 for (size_t i = 0; i < stan::math::size(nu); i++) {
78 const T_partials_return nu_dbl = nu_vec.val(i);
79
80 digammaNu_vec[i] = digamma(0.5 * nu_dbl);
81 digammaNuPlusHalf_vec[i] = digamma(0.5 + 0.5 * nu_dbl);
82 }
83 }
84
85 for (size_t n = 0; n < N; n++) {
86 // Explicit results for extreme values
87 // The gradients are technically ill-defined, but treated as zero
88 if (y_vec.val(n) == INFTY) {
89 continue;
90 }
91
92 const T_partials_return sigma_inv = 1.0 / sigma_vec.val(n);
93 const T_partials_return t = (y_vec.val(n) - mu_vec.val(n)) * sigma_inv;
94 const T_partials_return nu_dbl = nu_vec.val(n);
95 const T_partials_return q = nu_dbl / (t * t);
96 const T_partials_return r = 1.0 / (1.0 + q);
97 const T_partials_return J = 2 * r * r * q / t;
98 const T_partials_return betaNuHalf = beta(0.5, 0.5 * nu_dbl);
99 double zJacobian = t > 0 ? -0.5 : 0.5;
100
101 if (q < 2) {
102 T_partials_return z
103 = inc_beta(0.5 * nu_dbl, (T_partials_return)0.5, 1.0 - r);
104 const T_partials_return Pn = t > 0 ? 1.0 - 0.5 * z : 0.5 * z;
105 const T_partials_return d_ibeta
106 = pow(r, -0.5) * pow(1.0 - r, 0.5 * nu_dbl - 1) / betaNuHalf;
107
108 P *= Pn;
109
111 partials<0>(ops_partials)[n]
112 += -zJacobian * d_ibeta * J * sigma_inv / Pn;
113 }
115 T_partials_return g1 = 0;
116 T_partials_return g2 = 0;
117
118 grad_reg_inc_beta(g1, g2, 0.5 * nu_dbl, (T_partials_return)0.5, 1.0 - r,
119 digammaNu_vec[n], digammaHalf,
120 digammaNuPlusHalf_vec[n], betaNuHalf);
121
122 partials<1>(ops_partials)[n]
123 += zJacobian * (d_ibeta * (r / t) * (r / t) + 0.5 * g1) / Pn;
124 }
125
127 partials<2>(ops_partials)[n]
128 += zJacobian * d_ibeta * J * sigma_inv / Pn;
129 }
131 partials<3>(ops_partials)[n]
132 += zJacobian * d_ibeta * J * sigma_inv * t / Pn;
133 }
134
135 } else {
136 T_partials_return z
137 = 1.0 - inc_beta((T_partials_return)0.5, 0.5 * nu_dbl, r);
138
139 zJacobian *= -1;
140
141 const T_partials_return Pn = t > 0 ? 1.0 - 0.5 * z : 0.5 * z;
142
143 T_partials_return d_ibeta
144 = pow(1.0 - r, 0.5 * nu_dbl - 1) * pow(r, -0.5) / betaNuHalf;
145
146 P *= Pn;
147
149 partials<0>(ops_partials)[n]
150 += zJacobian * d_ibeta * J * sigma_inv / Pn;
151 }
153 T_partials_return g1 = 0;
154 T_partials_return g2 = 0;
155
156 grad_reg_inc_beta(g1, g2, (T_partials_return)0.5, 0.5 * nu_dbl, r,
157 digammaHalf, digammaNu_vec[n],
158 digammaNuPlusHalf_vec[n], betaNuHalf);
159
160 partials<1>(ops_partials)[n]
161 += zJacobian * (-d_ibeta * (r / t) * (r / t) + 0.5 * g2) / Pn;
162 }
164 partials<2>(ops_partials)[n]
165 += -zJacobian * d_ibeta * J * sigma_inv / Pn;
166 }
168 partials<3>(ops_partials)[n]
169 += -zJacobian * d_ibeta * J * sigma_inv * t / Pn;
170 }
171 }
172 }
173
175 for (size_t n = 0; n < stan::math::size(y); ++n) {
176 partials<0>(ops_partials)[n] *= P;
177 }
178 }
180 for (size_t n = 0; n < stan::math::size(nu); ++n) {
181 partials<1>(ops_partials)[n] *= P;
182 }
183 }
185 for (size_t n = 0; n < stan::math::size(mu); ++n) {
186 partials<2>(ops_partials)[n] *= P;
187 }
188 }
190 for (size_t n = 0; n < stan::math::size(sigma); ++n) {
191 partials<3>(ops_partials)[n] *= P;
192 }
193 }
194 return ops_partials.build(P);
195}
196
197} // namespace math
198} // namespace stan
199#endif
VectorBuilder allocates type T1 values to be used as intermediate values.
scalar_seq_view provides a uniform sequence-like wrapper around either a scalar or a sequence of scal...
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
int64_t size(const T &m)
Returns the size (number of the elements) of a matrix_cl or var_value<matrix_cl<T>>.
Definition size.hpp:19
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
Definition size_zero.hpp:19
auto pow(const T1 &x1, const T2 &x2)
Definition pow.hpp:32
void grad_reg_inc_beta(T &g1, T &g2, const T &a, const T &b, const T &z, const T &digammaA, const T &digammaB, const T &digammaSum, const T &betaAB)
Computes the gradients of the regularized incomplete beta function.
static constexpr double NEGATIVE_INFTY
Negative infinity.
Definition constants.hpp:51
fvar< T > inc_beta(const fvar< T > &a, const fvar< T > &b, const fvar< T > &x)
Definition inc_beta.hpp:19
void check_finite(const char *function, const char *name, const T_y &y)
Return true if all values in y are finite.
void check_not_nan(const char *function, const char *name, const T_y &y)
Check if y is not NaN.
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
Definition max_size.hpp:20
return_type_t< T_y, T_dof, T_loc, T_scale > student_t_cdf(const T_y &y, const T_dof &nu, const T_loc &mu, const T_scale &sigma)
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
Definition beta.hpp:51
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
static constexpr double INFTY
Positive infinity.
Definition constants.hpp:46
fvar< T > digamma(const fvar< T > &x)
Return the derivative of the log gamma function at the specified argument.
Definition digamma.hpp:23
typename ref_type_if< true, T >::type ref_type_t
Definition ref_type.hpp:55
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Extends std::true_type when instantiated with zero or more template parameters, all of which extend t...