Stan Math Library
5.0.0
Automatic Differentiation
|
void stan::math::grad_reg_inc_beta | ( | T & | g1, |
T & | g2, | ||
const T & | a, | ||
const T & | b, | ||
const T & | z, | ||
const T & | digammaA, | ||
const T & | digammaB, | ||
const T & | digammaSum, | ||
const T & | betaAB | ||
) |
Computes the gradients of the regularized incomplete beta function.
Specifically, this function computes gradients of ibeta(a, b, z)
, with respect to the arguments a
and b
.
T | type of arguments |
[out] | g1 | partial derivative of ibeta(a, b, z) with respect to a |
[out] | g2 | partial derivative of ibeta(a, b,
z) with respect to b |
[in] | a | a |
[in] | b | b |
[in] | z | z |
[in] | digammaA | the value of digamma(a) |
[in] | digammaB | the value of digamma(b) |
[in] | digammaSum | the value of digamma(a + b) |
[in] | betaAB | the value of beta(a, b) |
Definition at line 33 of file grad_reg_inc_beta.hpp.