1#ifndef STAN_MATH_PRIM_PROB_SCALED_INV_CHI_SQUARE_CDF_HPP
2#define STAN_MATH_PRIM_PROB_SCALED_INV_CHI_SQUARE_CDF_HPP
37template <
typename T_y,
typename T_dof,
typename T_scale>
39 const T_y& y,
const T_dof& nu,
const T_scale& s) {
46 static constexpr const char* function =
"scaled_inv_chi_square_cdf";
48 "Degrees of freedom parameter", nu,
"Scale parameter",
62 T_partials_return P(1.0);
73 if (y_vec.val(i) == 0) {
74 return ops_partials.build(0.0);
83 if constexpr (is_autodiff_v<T_dof>) {
85 const T_partials_return half_nu_dbl = 0.5 * nu_vec.val(i);
86 gamma_vec[i] =
tgamma(half_nu_dbl);
87 digamma_vec[i] =
digamma(half_nu_dbl);
91 for (
size_t n = 0; n < N; n++) {
94 if (y_vec.val(n) ==
INFTY) {
98 const T_partials_return y_dbl = y_vec.val(n);
99 const T_partials_return y_inv_dbl = 1.0 / y_dbl;
100 const T_partials_return half_nu_dbl = 0.5 * nu_vec.val(n);
101 const T_partials_return s_dbl = s_vec.val(n);
102 const T_partials_return half_s2_overx_dbl = 0.5 * s_dbl * s_dbl * y_inv_dbl;
103 const T_partials_return half_nu_s2_overx_dbl
104 = 2.0 * half_nu_dbl * half_s2_overx_dbl;
106 const T_partials_return Pn =
gamma_q(half_nu_dbl, half_nu_s2_overx_dbl);
107 const T_partials_return gamma_p_deriv
108 =
exp(-half_nu_s2_overx_dbl)
109 *
pow(half_nu_s2_overx_dbl, half_nu_dbl - 1) /
tgamma(half_nu_dbl);
113 if constexpr (is_autodiff_v<T_y>) {
114 partials<0>(ops_partials)[n]
115 += half_nu_s2_overx_dbl * y_inv_dbl * gamma_p_deriv / Pn;
118 if constexpr (is_autodiff_v<T_dof>) {
119 partials<1>(ops_partials)[n]
122 gamma_vec[n], digamma_vec[n])
123 - half_s2_overx_dbl * gamma_p_deriv)
127 if constexpr (is_autodiff_v<T_scale>) {
128 partials<2>(ops_partials)[n]
129 += -2.0 * half_nu_dbl * s_dbl * y_inv_dbl * gamma_p_deriv / Pn;
133 if constexpr (is_autodiff_v<T_y>) {
135 partials<0>(ops_partials)[n] *= P;
138 if constexpr (is_autodiff_v<T_dof>) {
140 partials<1>(ops_partials)[n] *= P;
143 if constexpr (is_autodiff_v<T_scale>) {
145 partials<2>(ops_partials)[n] *= P;
148 return ops_partials.build(P);
VectorBuilder allocates type T1 values to be used as intermediate values.
scalar_seq_view provides a uniform sequence-like wrapper around either a scalar or a sequence of scal...
return_type_t< T_y, T_dof, T_scale > scaled_inv_chi_square_cdf(const T_y &y, const T_dof &nu, const T_scale &s)
The CDF of a scaled inverse chi-squared density for y with the specified degrees of freedom parameter...
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
int64_t size(const T &m)
Returns the size (number of the elements) of a matrix_cl or var_value<matrix_cl<T>>.
void check_nonnegative(const char *function, const char *name, const T_y &y)
Check if y is non-negative.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
auto pow(const T1 &x1, const T2 &x2)
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
return_type_t< T1, T2 > grad_reg_inc_gamma(T1 a, T2 z, T1 g, T1 dig, double precision=1e-6, int max_steps=1e5)
Gradient of the regularized incomplete gamma functions igamma(a, z)
fvar< T > tgamma(const fvar< T > &x)
Return the result of applying the gamma function to the specified argument.
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
fvar< T > gamma_q(const fvar< T > &x1, const fvar< T > &x2)
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
static constexpr double INFTY
Positive infinity.
fvar< T > digamma(const fvar< T > &x)
Return the derivative of the log gamma function at the specified argument.
fvar< T > exp(const fvar< T > &x)
typename ref_type_if< true, T >::type ref_type_t
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...