Loading [MathJax]/extensions/TeX/AMSsymbols.js
Automatic Differentiation
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
Loading...
Searching...
No Matches
sum_to_zero_constrain.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_REV_CONSTRAINT_SUM_TO_ZERO_CONSTRAIN_HPP
2#define STAN_MATH_REV_CONSTRAINT_SUM_TO_ZERO_CONSTRAIN_HPP
3
11#include <cmath>
12#include <tuple>
13#include <vector>
14
15namespace stan {
16namespace math {
17
42template <typename T, require_rev_col_vector_t<T>* = nullptr>
43inline auto sum_to_zero_constrain(T&& y) {
44 using ret_type = plain_type_t<T>;
45 if (unlikely(y.size() == 0)) {
46 return arena_t<ret_type>(Eigen::VectorXd{{0}});
47 }
48 auto arena_y = to_arena(std::forward<T>(y));
49 arena_t<ret_type> arena_z = sum_to_zero_constrain(arena_y.val());
50
51 reverse_pass_callback([arena_y, arena_z]() mutable {
52 const auto N = arena_y.size();
53
54 double sum_u_adj = 0;
55 for (int i = 0; i < N; ++i) {
56 double n = static_cast<double>(i + 1);
57
58 // adjoint of the reverse cumulative sum computed in the forward mode
59 sum_u_adj += arena_z.adj().coeff(i);
60
61 // adjoint of the offset subtraction
62 double v_adj = -arena_z.adj().coeff(i + 1) * n;
63
64 double w_adj = v_adj + sum_u_adj;
65
66 arena_y.adj().coeffRef(i) += w_adj / sqrt(n * (n + 1));
67 }
68 });
69
70 return arena_z;
71}
72
83template <typename T, require_rev_matrix_t<T>* = nullptr,
84 require_not_t<is_rev_vector<T>>* = nullptr>
85inline auto sum_to_zero_constrain(T&& x) {
86 using ret_type = plain_type_t<T>;
87 if (unlikely(x.size() == 0)) {
88 return arena_t<ret_type>(Eigen::MatrixXd{{0}});
89 }
90 auto arena_x = to_arena(std::forward<T>(x));
91 arena_t<ret_type> arena_z = sum_to_zero_constrain(arena_x.val());
92
93 reverse_pass_callback([arena_x, arena_z]() mutable {
94 const auto Nf = arena_x.val().rows();
95 const auto Mf = arena_x.val().cols();
96
97 Eigen::VectorXd d_beta = Eigen::VectorXd::Zero(Nf);
98
99 for (int j = 0; j < Mf; ++j) {
100 double a_j = inv_sqrt((j + 1.0) * (j + 2.0));
101 double b_j = (j + 1.0) * a_j;
102
103 double d_ax = 0.0;
104
105 for (int i = 0; i < Nf; ++i) {
106 double a_i = inv_sqrt((i + 1.0) * (i + 2.0));
107 double b_i = (i + 1.0) * a_i;
108
109 double dY = arena_z.adj().coeff(i, j) - arena_z.adj().coeff(Nf, j)
110 + arena_z.adj().coeff(Nf, Mf) - arena_z.adj().coeff(i, Mf);
111 double dI_from_beta = a_j * d_beta.coeff(i);
112 d_beta.coeffRef(i) += -dY;
113
114 double dI_from_alpha = b_j * dY;
115 double dI = dI_from_alpha + dI_from_beta;
116 arena_x.adj().coeffRef(i, j) += b_i * dI + a_i * d_ax;
117 d_ax -= dI;
118 }
119 }
120 });
121
122 return arena_z;
123}
124
150template <typename T, typename Lp, is_rev_matrix<T>* = nullptr>
151inline auto sum_to_zero_constrain(T&& y, Lp& lp) {
152 return sum_to_zero_constrain(std::forward<T>(y));
153}
154
155} // namespace math
156} // namespace stan
157#endif
#define unlikely(x)
int64_t cols(const T_x &x)
Returns the number of columns in the specified kernel generator expression.
Definition cols.hpp:21
int64_t rows(const T_x &x)
Returns the number of rows in the specified kernel generator expression.
Definition rows.hpp:22
void reverse_pass_callback(F &&functor)
Puts a callback on the autodiff stack to be called in reverse pass.
arena_t< T > to_arena(const T &a)
Converts given argument into a type that either has any dynamic allocation on AD stack or schedules i...
Definition to_arena.hpp:25
fvar< T > sqrt(const fvar< T > &x)
Definition sqrt.hpp:18
plain_type_t< Vec > sum_to_zero_constrain(const Vec &y)
Return a vector with sum zero corresponding to the specified free vector.
fvar< T > inv_sqrt(const fvar< T > &x)
Definition inv_sqrt.hpp:14
typename plain_type< T >::type plain_type_t
typename internal::arena_type_impl< std::decay_t< T > >::type arena_t
Determines a type that can be used in place of T that does any dynamic allocations on the AD stack.
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...