Stan Math Library
5.0.0
Automatic Differentiation
|
|
inline |
Return a vector with sum zero corresponding to the specified free vector.
The sum-to-zero transform is defined using a modified version of the inverse of the isometric log ratio transform (ILR). See: Egozcue, Juan Jose; Pawlowsky-Glahn, Vera; Mateu-Figueras, Gloria; Barcelo-Vidal, Carles (2003), "Isometric logratio transformations for compositional data analysis", Mathematical Geology, 35 (3): 279–300, doi:10.1023/A:1023818214614, S2CID 122844634
This implementation is closer to the description of the same using "pivot coordinates" in Filzmoser, P., Hron, K., Templ, M. (2018). Geometrical Properties of Compositional Data. In: Applied Compositional Data Analysis. Springer Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-96422-5_3
This is a linear transform, with no Jacobian.
T | type of the vector |
y | Free vector input of dimensionality K - 1. |
Definition at line 42 of file sum_to_zero_constrain.hpp.