Automatic Differentiation
 
Loading...
Searching...
No Matches
lub_constrain.hpp File Reference

Go to the source code of this file.

Namespaces

namespace  stan
 The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation from C or the boost::math::lgamma implementation.
 
namespace  stan::math
 Matrices and templated mathematical functions.
 

Functions

template<typename T , typename L , typename U , require_all_eigen_t< T, L, U > * = nullptr, require_not_var_t< return_type_t< T, L, U > > * = nullptr>
auto stan::math::lub_constrain (const T &x, const L &lb, const U &ub)
 Overload for Eigen matrix and matrix bounds.
 
template<typename T , typename L , typename U , require_all_kernel_expressions_and_none_scalar_t< T > * = nullptr, require_all_kernel_expressions_t< L, U > * = nullptr>
auto stan::math::lub_constrain (const T &x, const L &lb, const U &ub, return_type_t< T, L, U > &lp)
 Return the lower and upper-bounded matrix derived by transforming the specified free matrix given the specified lower and upper bounds.
 
template<typename T , typename L , typename U , require_eigen_t< T > * = nullptr, require_all_stan_scalar_t< L, U > * = nullptr, require_not_var_t< return_type_t< T, L, U > > * = nullptr>
auto stan::math::lub_constrain (const T &x, const L &lb, const U &ub)
 Overload for Eigen matrix and scalar bounds.
 
template<typename T , typename L , typename U , require_eigen_t< T > * = nullptr, require_all_stan_scalar_t< L, U > * = nullptr, require_not_var_t< return_type_t< T, L, U > > * = nullptr>
auto stan::math::lub_constrain (const T &x, const L &lb, const U &ub, return_type_t< T, L, U > &lp)
 Overload for Eigen matrix and scalar bounds plus lp.
 
template<typename T , typename L , typename U , require_all_matrix_t< T, L > * = nullptr, require_stan_scalar_t< U > * = nullptr, require_var_t< return_type_t< T, L, U > > * = nullptr>
auto stan::math::lub_constrain (const T &x, const L &lb, const U &ub, std::decay_t< return_type_t< T, L, U > > &lp)
 Specialization for Eigen matrix with matrix lower bound and scalar upper bound plus lp.