1#ifndef STAN_MATH_PRIM_PROB_POISSON_LOG_GLM_LPMF_HPP
2#define STAN_MATH_PRIM_PROB_POISSON_LOG_GLM_LPMF_HPP
51template <
bool propto,
typename T_y,
typename T_x,
typename T_alpha,
52 typename T_beta, require_matrix_t<T_x>* =
nullptr>
54 const T_y& y,
const T_x& x,
const T_alpha& alpha,
const T_beta&
beta) {
60 constexpr int T_x_rows = T_x::RowsAtCompileTime;
63 typename std::conditional_t<T_x_rows == 1, T_partials_return,
64 Array<T_partials_return, Dynamic, 1>>;
70 const size_t N_attributes = x.cols();
72 static constexpr const char* function =
"poisson_log_glm_lpmf";
77 const auto& y_ref =
to_ref(y);
88 T_alpha_ref alpha_ref = alpha;
89 T_beta_ref beta_ref =
beta;
92 const auto& x_val = to_ref_if<is_autodiff_v<T_beta>>(
value_of(x_ref));
93 const auto& alpha_val =
value_of(alpha_ref);
94 const auto& beta_val =
value_of(beta_ref);
98 const auto& beta_val_vec
101 Array<T_partials_return, Dynamic, 1> theta(N_instances);
102 if constexpr (T_x_rows == 1) {
103 T_theta_tmp theta_tmp = (x_val * beta_val_vec).coeff(0, 0);
106 theta = x_val * beta_val_vec;
110 Matrix<T_partials_return, Dynamic, 1> theta_derivative
112 T_partials_return theta_derivative_sum =
sum(theta_derivative);
113 if (!
isfinite(theta_derivative_sum)) {
116 check_finite(function,
"Matrix of independent variables", theta);
119 T_partials_return logp(0);
125 -
exp(theta.array()));
129 if constexpr (is_autodiff_v<T_beta>) {
130 if constexpr (T_x_rows == 1) {
131 edge<2>(ops_partials).partials_ = theta_derivative.sum() * x_val;
133 partials<2>(ops_partials) = x_val.transpose() * theta_derivative;
136 if constexpr (is_autodiff_v<T_x>) {
137 if constexpr (T_x_rows == 1) {
138 edge<0>(ops_partials).partials_ = beta_val_vec * theta_derivative.sum();
140 edge<0>(ops_partials).partials_
141 = (beta_val_vec * theta_derivative.transpose()).
transpose();
144 if constexpr (is_autodiff_v<T_alpha>) {
146 partials<1>(ops_partials) = theta_derivative;
148 partials<1>(ops_partials)[0] = theta_derivative_sum;
151 return ops_partials.build(logp);
154template <
typename T_y,
typename T_x,
typename T_alpha,
typename T_beta>
156 const T_y& y,
const T_x& x,
const T_alpha& alpha,
const T_beta&
beta) {
157 return poisson_log_glm_lpmf<false>(y, x, alpha,
beta);
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
auto transpose(Arg &&a)
Transposes a kernel generator expression.
return_type_t< T_x_cl, T_alpha_cl, T_beta_cl > poisson_log_glm_lpmf(const T_y_cl &y, const T_x_cl &x, const T_alpha_cl &alpha, const T_beta_cl &beta)
Returns the log PMF of the Generalized Linear Model (GLM) with Poisson distribution and log link func...
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
int64_t size(const T &m)
Returns the size (number of the elements) of a matrix_cl or var_value<matrix_cl<T>>.
T as_array_or_scalar(T &&v)
Returns specified input value.
void check_nonnegative(const char *function, const char *name, const T_y &y)
Check if y is non-negative.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
void check_consistent_size(const char *function, const char *name, const T &x, size_t expected_size)
Check if x is consistent with size expected_size.
T value_of(const fvar< T > &v)
Return the value of the specified variable.
void check_finite(const char *function, const char *name, const T_y &y)
Return true if all values in y are finite.
fvar< T > lgamma(const fvar< T > &x)
Return the natural logarithm of the gamma function applied to the specified argument.
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
fvar< T > exp(const fvar< T > &x)
typename ref_type_if< is_autodiff_v< T >, T >::type ref_type_if_not_constant_t
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
If the input type T is either an eigen matrix with 1 column or 1 row at compile time or a standard ve...
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...