Automatic Differentiation
 
Loading...
Searching...
No Matches
poisson_log_glm_lpmf.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_PROB_POISSON_LOG_GLM_LPMF_HPP
2#define STAN_MATH_PRIM_PROB_POISSON_LOG_GLM_LPMF_HPP
3
17#include <cmath>
18
19namespace stan {
20namespace math {
21
51template <bool propto, typename T_y, typename T_x, typename T_alpha,
52 typename T_beta, require_matrix_t<T_x>* = nullptr>
54 const T_y& y, const T_x& x, const T_alpha& alpha, const T_beta& beta) {
55 using Eigen::Array;
56 using Eigen::Dynamic;
57 using Eigen::Matrix;
58 using std::exp;
59 using std::isfinite;
60 constexpr int T_x_rows = T_x::RowsAtCompileTime;
61 using T_partials_return = partials_return_t<T_y, T_x, T_alpha, T_beta>;
62 using T_theta_tmp =
63 typename std::conditional_t<T_x_rows == 1, T_partials_return,
64 Array<T_partials_return, Dynamic, 1>>;
65 using T_x_ref = ref_type_if_not_constant_t<T_x>;
66 using T_alpha_ref = ref_type_if_not_constant_t<T_alpha>;
67 using T_beta_ref = ref_type_if_not_constant_t<T_beta>;
68
69 const size_t N_instances = T_x_rows == 1 ? stan::math::size(y) : x.rows();
70 const size_t N_attributes = x.cols();
71
72 static constexpr const char* function = "poisson_log_glm_lpmf";
73 check_consistent_size(function, "Vector of dependent variables", y,
74 N_instances);
75 check_consistent_size(function, "Weight vector", beta, N_attributes);
76 check_consistent_size(function, "Vector of intercepts", alpha, N_instances);
77 const auto& y_ref = to_ref(y);
78 check_nonnegative(function, "Vector of dependent variables", y_ref);
79
80 if (size_zero(y)) {
81 return 0;
82 }
84 return 0;
85 }
86
87 T_x_ref x_ref = x;
88 T_alpha_ref alpha_ref = alpha;
89 T_beta_ref beta_ref = beta;
90
91 const auto& y_val = value_of(y_ref);
92 const auto& x_val = to_ref_if<is_autodiff_v<T_beta>>(value_of(x_ref));
93 const auto& alpha_val = value_of(alpha_ref);
94 const auto& beta_val = value_of(beta_ref);
95
96 const auto& y_val_vec = to_ref(as_column_vector_or_scalar(y_val));
97 const auto& alpha_val_vec = as_column_vector_or_scalar(alpha_val);
98 const auto& beta_val_vec
99 = to_ref_if<is_autodiff_v<T_x>>(as_column_vector_or_scalar(beta_val));
100
101 Array<T_partials_return, Dynamic, 1> theta(N_instances);
102 if constexpr (T_x_rows == 1) {
103 T_theta_tmp theta_tmp = (x_val * beta_val_vec).coeff(0, 0);
104 theta = theta_tmp + as_array_or_scalar(alpha_val_vec);
105 } else {
106 theta = x_val * beta_val_vec;
107 theta += as_array_or_scalar(alpha_val_vec);
108 }
109
110 Matrix<T_partials_return, Dynamic, 1> theta_derivative
111 = as_array_or_scalar(y_val_vec) - exp(theta.array());
112 T_partials_return theta_derivative_sum = sum(theta_derivative);
113 if (!isfinite(theta_derivative_sum)) {
114 check_finite(function, "Weight vector", beta);
115 check_finite(function, "Intercept", alpha);
116 check_finite(function, "Matrix of independent variables", theta);
117 }
118
119 T_partials_return logp(0);
120 if constexpr (include_summand<propto>::value) {
121 logp -= sum(lgamma(as_array_or_scalar(y_val_vec) + 1));
122 }
123
124 logp += sum(as_array_or_scalar(y_val_vec) * theta.array()
125 - exp(theta.array()));
126
127 auto ops_partials = make_partials_propagator(x_ref, alpha_ref, beta_ref);
128 // Compute the necessary derivatives.
129 if constexpr (is_autodiff_v<T_beta>) {
130 if constexpr (T_x_rows == 1) {
131 edge<2>(ops_partials).partials_ = theta_derivative.sum() * x_val;
132 } else {
133 partials<2>(ops_partials) = x_val.transpose() * theta_derivative;
134 }
135 }
136 if constexpr (is_autodiff_v<T_x>) {
137 if constexpr (T_x_rows == 1) {
138 edge<0>(ops_partials).partials_ = beta_val_vec * theta_derivative.sum();
139 } else {
140 edge<0>(ops_partials).partials_
141 = (beta_val_vec * theta_derivative.transpose()).transpose();
142 }
143 }
144 if constexpr (is_autodiff_v<T_alpha>) {
145 if constexpr (is_vector<T_alpha>::value) {
146 partials<1>(ops_partials) = theta_derivative;
147 } else {
148 partials<1>(ops_partials)[0] = theta_derivative_sum;
149 }
150 }
151 return ops_partials.build(logp);
152}
153
154template <typename T_y, typename T_x, typename T_alpha, typename T_beta>
156 const T_y& y, const T_x& x, const T_alpha& alpha, const T_beta& beta) {
157 return poisson_log_glm_lpmf<false>(y, x, alpha, beta);
158}
159
160} // namespace math
161} // namespace stan
162#endif
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
auto transpose(Arg &&a)
Transposes a kernel generator expression.
return_type_t< T_x_cl, T_alpha_cl, T_beta_cl > poisson_log_glm_lpmf(const T_y_cl &y, const T_x_cl &x, const T_alpha_cl &alpha, const T_beta_cl &beta)
Returns the log PMF of the Generalized Linear Model (GLM) with Poisson distribution and log link func...
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
int64_t size(const T &m)
Returns the size (number of the elements) of a matrix_cl or var_value<matrix_cl<T>>.
Definition size.hpp:19
T as_array_or_scalar(T &&v)
Returns specified input value.
void check_nonnegative(const char *function, const char *name, const T_y &y)
Check if y is non-negative.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
Definition size_zero.hpp:19
void check_consistent_size(const char *function, const char *name, const T &x, size_t expected_size)
Check if x is consistent with size expected_size.
T value_of(const fvar< T > &v)
Return the value of the specified variable.
Definition value_of.hpp:18
void check_finite(const char *function, const char *name, const T_y &y)
Return true if all values in y are finite.
fvar< T > lgamma(const fvar< T > &x)
Return the natural logarithm of the gamma function applied to the specified argument.
Definition lgamma.hpp:21
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
Definition sum.hpp:23
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
Definition to_ref.hpp:18
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
Definition beta.hpp:51
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
fvar< T > exp(const fvar< T > &x)
Definition exp.hpp:15
typename ref_type_if< is_autodiff_v< T >, T >::type ref_type_if_not_constant_t
Definition ref_type.hpp:63
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
If the input type T is either an eigen matrix with 1 column or 1 row at compile time or a standard ve...
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...