Automatic Differentiation
 
Loading...
Searching...
No Matches
poisson_log_glm_lpmf.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_OPENCL_PRIM_POISSON_LOG_GLM_LPMF_HPP
2#define STAN_MATH_OPENCL_PRIM_POISSON_LOG_GLM_LPMF_HPP
3#ifdef STAN_OPENCL
4
20#include <cmath>
21
22namespace stan {
23namespace math {
24
50template <bool propto, typename T_y_cl, typename T_x_cl, typename T_alpha_cl,
51 typename T_beta_cl,
53 T_y_cl, T_x_cl, T_alpha_cl, T_beta_cl>* = nullptr>
55 const T_y_cl& y, const T_x_cl& x, const T_alpha_cl& alpha,
56 const T_beta_cl& beta) {
57 static constexpr const char* function = "poisson_log_glm_lpmf(OpenCL)";
59 constexpr bool is_y_vector = !is_stan_scalar<T_y_cl>::value;
60 constexpr bool is_alpha_vector = !is_stan_scalar<T_alpha_cl>::value;
61 using Eigen::Dynamic;
62 using std::exp;
63 using std::isfinite;
64
65 const size_t N = x.rows();
66 const size_t M = x.cols();
67
68 if constexpr (is_y_vector) {
69 check_size_match(function, "Rows of ", "x", N, "rows of ", "y",
70 math::size(y));
71 }
72 check_size_match(function, "Columns of ", "x_cl", M, "size of ", "beta",
74 if constexpr (is_alpha_vector) {
75 check_size_match(function, "Rows of ", "x", N, "size of ", "alpha",
76 math::size(alpha));
77 }
78 if (N == 0) {
79 return 0;
80 }
81
82 if constexpr (!include_summand<propto, T_x_cl, T_alpha_cl,
83 T_beta_cl>::value) {
84 return 0;
85 }
86
87 const auto& y_val = value_of(y);
88 const auto& x_val = value_of(x);
89 const auto& alpha_val = value_of(alpha);
90 const auto& beta_val = value_of(beta);
91
92 T_partials_return logp(0);
93
94 const bool need_logp = include_summand<propto>::value;
95
96 auto theta_expr = matrix_vector_multiply(x_val, beta_val) + alpha_val;
97 auto exp_theta_expr = exp(theta_expr);
98 auto theta_derivative_expr = select(y_val < 0 || !isfinite(theta_expr),
99 NOT_A_NUMBER, y_val - exp_theta_expr);
100 auto logp_expr
101 = colwise_sum(select(need_logp, -lgamma(y_val + 1.0), 0.0)
102 + elt_multiply(y_val, theta_expr) - exp_theta_expr);
103
104 const int wgs = logp_expr.rows();
105
106 matrix_cl<double> theta_derivative_cl(N, 1);
107 matrix_cl<double> theta_derivative_sum_cl(wgs, 1);
108 matrix_cl<double> logp_cl(wgs, 1);
109
110 results(theta_derivative_cl, theta_derivative_sum_cl, logp_cl) = expressions(
111 theta_derivative_expr, colwise_sum(theta_derivative_expr), logp_expr);
112
113 double theta_derivative_sum = sum(from_matrix_cl(theta_derivative_sum_cl));
114 logp += sum(from_matrix_cl(logp_cl));
115 if (!std::isfinite(theta_derivative_sum)) {
116 results(check_cl(function, "Vector of dependent variables", y_val,
117 "nonnegative"),
118 check_cl(function, "Intercept", alpha_val, "finite"))
119 = expressions(0 <= y_val, isfinite(alpha_val));
120 check_cl(function, "Weight vector", beta_val, "finite")
121 = isfinite(beta_val);
122 check_cl(function, "Matrix of independent variables", x_val, "finite")
123 = isfinite(x_val);
124 }
125
126 auto ops_partials = make_partials_propagator(x, alpha, beta);
127 // Compute the necessary derivatives.
128 if constexpr (is_autodiff_v<T_x_cl>) {
129 partials<0>(ops_partials)
130 = transpose(beta_val * transpose(theta_derivative_cl));
131 }
132 if constexpr (is_autodiff_v<T_alpha_cl>) {
133 if constexpr (is_alpha_vector) {
134 partials<1>(ops_partials) = theta_derivative_cl;
135 } else {
136 partials<1>(ops_partials)[0] = theta_derivative_sum;
137 }
138 }
139 if constexpr (is_autodiff_v<T_beta_cl>) {
140 // transposition of a vector can be done without copying
141 const matrix_cl<double> theta_derivative_transpose_cl(
142 theta_derivative_cl.buffer(), 1, theta_derivative_cl.rows());
143 matrix_cl<double> edge3_partials_transpose_cl
144 = theta_derivative_transpose_cl * x_val;
145 partials<2>(ops_partials)
146 = matrix_cl<double>(edge3_partials_transpose_cl.buffer(),
147 edge3_partials_transpose_cl.cols(), 1);
148 if (beta_val.rows() != 0) {
149 edge<2>(ops_partials)
150 .partials_.add_write_event(
151 edge3_partials_transpose_cl.write_events().back());
152 }
153 }
154 return ops_partials.build(logp);
155}
156
157} // namespace math
158} // namespace stan
159
160#endif
161#endif
const cl::Buffer & buffer() const
const tbb::concurrent_vector< cl::Event > & write_events() const
Get the events from the event stacks.
Represents an arithmetic matrix on the OpenCL device.
Definition matrix_cl.hpp:47
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
select_< as_operation_cl_t< T_condition >, as_operation_cl_t< T_then >, as_operation_cl_t< T_else > > select(T_condition &&condition, T_then &&then, T_else &&els)
Selection operation on kernel generator expressions.
Definition select.hpp:148
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
Definition check_cl.hpp:219
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
auto transpose(Arg &&a)
Transposes a kernel generator expression.
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
return_type_t< T_x_cl, T_alpha_cl, T_beta_cl > poisson_log_glm_lpmf(const T_y_cl &y, const T_x_cl &x, const T_alpha_cl &alpha, const T_beta_cl &beta)
Returns the log PMF of the Generalized Linear Model (GLM) with Poisson distribution and log link func...
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
Definition copy.hpp:61
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
int64_t size(const T &m)
Returns the size (number of the elements) of a matrix_cl or var_value<matrix_cl<T>>.
Definition size.hpp:19
static constexpr double NOT_A_NUMBER
(Quiet) not-a-number value.
Definition constants.hpp:56
T value_of(const fvar< T > &v)
Return the value of the specified variable.
Definition value_of.hpp:18
fvar< T > lgamma(const fvar< T > &x)
Return the natural logarithm of the gamma function applied to the specified argument.
Definition lgamma.hpp:21
auto matrix_vector_multiply(T_matrix &&matrix, T_vector &&vector)
Multiplies a matrix and a vector on an OpenCL device.
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
Definition sum.hpp:23
void check_size_match(const char *function, const char *name_i, T_size1 i, const char *name_j, T_size2 j)
Check if the provided sizes match.
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
Definition beta.hpp:51
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
fvar< T > exp(const fvar< T > &x)
Definition exp.hpp:15
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Checks if decayed type is a var, fvar, or arithmetic.
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...