1#ifndef STAN_MATH_PRIM_PROB_PARETO_LCDF_HPP
2#define STAN_MATH_PRIM_PROB_PARETO_LCDF_HPP
24template <
typename T_y,
typename T_scale,
typename T_shape,
26 T_y, T_scale, T_shape>* =
nullptr>
29 const T_shape& alpha) {
35 static constexpr const char* function =
"pareto_lcdf";
37 y_min,
"Shape parameter", alpha);
44 T_y_min_ref y_min_ref = y_min;
45 T_alpha_ref alpha_ref = alpha;
59 if (
sum(promote_scalar<int>(y_val < y_min_val))) {
62 if (
sum(promote_scalar<int>(isinf(y_val)))) {
63 return ops_partials.build(0.0);
66 const auto& log_quot = to_ref_if<is_any_autodiff_v<T_y, T_scale, T_shape>>(
67 log(y_min_val / y_val));
68 const auto& exp_prod = to_ref_if<is_any_autodiff_v<T_y, T_scale, T_shape>>(
69 exp(alpha_val * log_quot));
71 T_partials_return P =
sum(
log1m(exp_prod));
73 if constexpr (is_any_autodiff_v<T_y, T_scale, T_shape>) {
75 is_any_autodiff_v<T_y, T_scale> && is_autodiff_v<T_shape>)>(
76 exp_prod / (1 - exp_prod));
77 if constexpr (is_any_autodiff_v<T_y, T_scale>) {
78 const auto& y_min_inv =
inv(y_min_val);
80 =
to_ref_if<(is_autodiff_v<T_y> && is_autodiff_v<T_scale>)>(
81 -alpha_val * y_min_inv * common_deriv);
82 if constexpr (is_autodiff_v<T_y>) {
83 partials<0>(ops_partials) = -common_deriv2 *
exp(log_quot);
85 if constexpr (is_autodiff_v<T_scale>) {
86 partials<1>(ops_partials) = std::move(common_deriv2);
89 if constexpr (is_autodiff_v<T_shape>) {
90 partials<2>(ops_partials) = -common_deriv * log_quot;
94 return ops_partials.build(P);
require_all_not_t< is_nonscalar_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_not_nonscalar_prim_or_rev_kernel_expression_t
Require none of the types satisfy is_nonscalar_prim_or_rev_kernel_expression.
return_type_t< T_y_cl, T_scale_cl, T_shape_cl > pareto_lcdf(const T_y_cl &y, const T_scale_cl &y_min, const T_shape_cl &alpha)
Returns the Pareto cumulative density function.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
static constexpr double negative_infinity()
Return negative infinity.
void check_nonnegative(const char *function, const char *name, const T_y &y)
Check if y is non-negative.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
T to_ref_if(T &&a)
No-op that should be optimized away.
fvar< T > log(const fvar< T > &x)
auto as_value_column_array_or_scalar(T &&a)
Extract the value from an object and for eigen vectors and std::vectors convert to an eigen column ar...
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
fvar< T > log1m(const fvar< T > &x)
fvar< T > inv(const fvar< T > &x)
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
fvar< T > exp(const fvar< T > &x)
typename ref_type_if< is_autodiff_v< T >, T >::type ref_type_if_not_constant_t
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
bool isinf(const stan::math::var &a)
Return 1 if the specified argument is positive infinity or negative infinity and 0 otherwise.