1#ifndef STAN_MATH_PRIM_PROB_PARETO_LCCDF_HPP
2#define STAN_MATH_PRIM_PROB_PARETO_LCCDF_HPP
24template <
typename T_y,
typename T_scale,
typename T_shape,
26 T_y, T_scale, T_shape>* =
nullptr>
29 const T_shape& alpha) {
35 static constexpr const char* function =
"pareto_lccdf";
37 y_min,
"Shape parameter", alpha);
43 T_y_min_ref y_min_ref = y_min;
44 T_alpha_ref alpha_ref = alpha;
56 if (
sum(promote_scalar<int>(y_val < y_min_val))) {
57 return ops_partials.build(0.0);
59 if (
sum(promote_scalar<int>(isinf(y_val)))) {
63 auto log_quot =
to_ref_if<(is_autodiff_v<T_y> || is_autodiff_v<T_shape>)>(
64 log(y_min_val / y_val));
66 T_partials_return P =
sum(alpha_val * log_quot);
68 size_t N =
max_size(y, y_min, alpha);
69 if constexpr (is_any_autodiff_v<T_y, T_scale>) {
70 const auto& alpha_div_y_min
71 =
to_ref_if<(is_autodiff_v<T_y> && is_autodiff_v<T_scale>)>(
72 alpha_val / y_min_val);
73 if constexpr (is_autodiff_v<T_y>) {
74 partials<0>(ops_partials) = -alpha_div_y_min *
exp(log_quot);
76 if constexpr (is_autodiff_v<T_scale>) {
77 edge<1>(ops_partials).partials_
78 = alpha_div_y_min * N /
max_size(y_min, alpha);
81 if constexpr (is_autodiff_v<T_shape>) {
84 using Log_quot_array = Eigen::Array<Log_quot_scalar, Eigen::Dynamic, 1>;
86 edge<2>(ops_partials).partials_ = std::move(log_quot);
88 partials<2>(ops_partials) = Log_quot_array::Constant(N, 1, log_quot);
91 partials<2>(ops_partials) = log_quot * N /
max_size(y, y_min);
94 return ops_partials.build(P);
require_all_not_t< is_nonscalar_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_not_nonscalar_prim_or_rev_kernel_expression_t
Require none of the types satisfy is_nonscalar_prim_or_rev_kernel_expression.
return_type_t< T_y_cl, T_scale_cl, T_shape_cl > pareto_lccdf(const T_y_cl &y, const T_scale_cl &y_min, const T_shape_cl &alpha)
Returns the Pareto cumulative density function.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
static constexpr double negative_infinity()
Return negative infinity.
void check_nonnegative(const char *function, const char *name, const T_y &y)
Check if y is non-negative.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
T to_ref_if(T &&a)
No-op that should be optimized away.
fvar< T > log(const fvar< T > &x)
auto as_value_column_array_or_scalar(T &&a)
Extract the value from an object and for eigen vectors and std::vectors convert to an eigen column ar...
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
fvar< T > exp(const fvar< T > &x)
typename ref_type_if< is_autodiff_v< T >, T >::type ref_type_if_not_constant_t
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
bool isinf(const stan::math::var &a)
Return 1 if the specified argument is positive infinity or negative infinity and 0 otherwise.
If the input type T is either an eigen matrix with 1 column or 1 row at compile time or a standard ve...