Automatic Differentiation
 
Loading...
Searching...
No Matches
normal_lcdf.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_PROB_NORMAL_LCDF_HPP
2#define STAN_MATH_PRIM_PROB_NORMAL_LCDF_HPP
3
18#include <cmath>
19#include <limits>
20
21namespace stan {
22namespace math {
23
24template <typename T_y, typename T_loc, typename T_scale,
26 T_y, T_loc, T_scale>* = nullptr>
28 const T_loc& mu,
29 const T_scale& sigma) {
30 using T_partials_return = partials_return_t<T_y, T_loc, T_scale>;
31 using std::exp;
32 using std::fabs;
33 using std::log;
34 using std::pow;
35 using std::sqrt;
36 using T_y_ref = ref_type_t<T_y>;
37 using T_mu_ref = ref_type_t<T_loc>;
38 using T_sigma_ref = ref_type_t<T_scale>;
39 static constexpr const char* function = "normal_lcdf";
40 check_consistent_sizes(function, "Random variable", y, "Location parameter",
41 mu, "Scale parameter", sigma);
42 T_y_ref y_ref = y;
43 T_mu_ref mu_ref = mu;
44 T_sigma_ref sigma_ref = sigma;
45 check_not_nan(function, "Random variable", y_ref);
46 check_finite(function, "Location parameter", mu_ref);
47 check_positive(function, "Scale parameter", sigma_ref);
48
49 if (size_zero(y, mu, sigma)) {
50 return 0;
51 }
52
53 T_partials_return cdf_log(0.0);
54 auto ops_partials = make_partials_propagator(y_ref, mu_ref, sigma_ref);
55
56 scalar_seq_view<T_y_ref> y_vec(y_ref);
57 scalar_seq_view<T_mu_ref> mu_vec(mu_ref);
58 scalar_seq_view<T_sigma_ref> sigma_vec(sigma_ref);
59 size_t N = max_size(y, mu, sigma);
60
61 for (size_t n = 0; n < N; n++) {
62 const T_partials_return y_dbl = y_vec.val(n);
63 const T_partials_return mu_dbl = mu_vec.val(n);
64 const T_partials_return sigma_dbl = sigma_vec.val(n);
65
66 const T_partials_return scaled_diff
67 = (y_dbl - mu_dbl) / (sigma_dbl * SQRT_TWO);
68
69 const T_partials_return sigma_sqrt2 = sigma_dbl * SQRT_TWO;
70 const T_partials_return x2 = square(scaled_diff);
71
72 // Rigorous numerical approximations are applied here to deal with values
73 // of |scaled_diff|>>0. This is needed to deal with rare base-rate
74 // logistic regression problems where it is useful to use an alternative
75 // link function instead.
76 //
77 // use erfc() instead of erf() in order to retain precision
78 // since for x>0 erfc()->0
79 if (scaled_diff > 0.0) {
80 // CDF(x) = 1/2 + 1/2erf(x) = 1 - 1/2erfc(x)
81 cdf_log += log1p(-0.5 * erfc(scaled_diff));
82 if (!is_not_nan(cdf_log)) {
83 cdf_log = 0;
84 }
85 } else if (scaled_diff > -20.0) {
86 // CDF(x) = 1/2 - 1/2erf(-x) = 1/2erfc(-x)
87 cdf_log += log(erfc(-scaled_diff)) + LOG_HALF;
88 } else if (10.0 * log(fabs(scaled_diff))
89 < log(std::numeric_limits<T_partials_return>::max())) {
90 // entering territory where erfc(-x)~0
91 // need to use direct numerical approximation of cdf_log instead
92 // the following based on W. J. Cody, Math. Comp. 23(107):631-638 (1969)
93 // CDF(x) = 1/2erfc(-x)
94 const T_partials_return x4 = pow(scaled_diff, 4);
95 const T_partials_return x6 = pow(scaled_diff, 6);
96 const T_partials_return x8 = pow(scaled_diff, 8);
97 const T_partials_return x10 = pow(scaled_diff, 10);
98 const T_partials_return temp_p
99 = 0.000658749161529837803157 + 0.0160837851487422766278 / x2
100 + 0.125781726111229246204 / x4 + 0.360344899949804439429 / x6
101 + 0.305326634961232344035 / x8 + 0.0163153871373020978498 / x10;
102 const T_partials_return temp_q
103 = -0.00233520497626869185443 - 0.0605183413124413191178 / x2
104 - 0.527905102951428412248 / x4 - 1.87295284992346047209 / x6
105 - 2.56852019228982242072 / x8 - 1.0 / x10;
106 cdf_log += LOG_HALF + log(INV_SQRT_PI + (temp_p / temp_q) / x2)
107 - log(-scaled_diff) - x2;
108 } else {
109 // scaled_diff^10 term will overflow
111 }
112
114 // compute partial derivatives
115 // based on analytic form given by:
116 // dln(CDF)/dx = exp(-x^2)/(sqrt(pi)*(1/2+erf(x)/2)
117 T_partials_return dncdf_log = 0.0;
118 T_partials_return t = 0.0;
119 T_partials_return t2 = 0.0;
120 T_partials_return t4 = 0.0;
121
122 // calculate using piecewise function
123 // (due to instability / inaccuracy in the various approximations)
124 if (scaled_diff > 2.9) {
125 // approximation derived from Abramowitz and Stegun (1964) 7.1.26
126 t = 1.0 / (1.0 + 0.3275911 * scaled_diff);
127 t2 = square(t);
128 t4 = pow(t, 4);
129 dncdf_log
130 = 1.0
131 / (SQRT_PI
132 * (exp(x2) - 0.254829592 + 0.284496736 * t - 1.421413741 * t2
133 + 1.453152027 * t2 * t - 1.061405429 * t4));
134 } else if (scaled_diff > 2.5) {
135 // in the trouble area where all of the standard numerical
136 // approximations are unstable - bridge the gap using Taylor
137 // expansions of the analytic function
138 // use Taylor expansion centred around x=2.7
139 t = scaled_diff - 2.7;
140 t2 = square(t);
141 t4 = pow(t, 4);
142 dncdf_log = 0.0003849882382 - 0.002079084702 * t + 0.005229340880 * t2
143 - 0.008029540137 * t2 * t + 0.008232190507 * t4
144 - 0.005692364250 * t4 * t + 0.002399496363 * pow(t, 6);
145 } else if (scaled_diff > 2.1) {
146 // use Taylor expansion centred around x=2.3
147 t = scaled_diff - 2.3;
148 t2 = square(t);
149 t4 = pow(t, 4);
150 dncdf_log = 0.002846135439 - 0.01310032351 * t + 0.02732189391 * t2
151 - 0.03326906904 * t2 * t + 0.02482478940 * t4
152 - 0.009883071924 * t4 * t - 0.0002771362254 * pow(t, 6);
153 } else if (scaled_diff > 1.5) {
154 // use Taylor expansion centred around x=1.85
155 t = scaled_diff - 1.85;
156 t2 = square(t);
157 t4 = pow(t, 4);
158 dncdf_log = 0.01849212058 - 0.06876280470 * t + 0.1099906382 * t2
159 - 0.09274533184 * t2 * t + 0.03543327418 * t4
160 + 0.005644855518 * t4 * t - 0.01111434424 * pow(t, 6);
161 } else if (scaled_diff > 0.8) {
162 // use Taylor expansion centred around x=1.15
163 t = scaled_diff - 1.15;
164 t2 = square(t);
165 t4 = pow(t, 4);
166 dncdf_log = 0.1585747034 - 0.3898677543 * t + 0.3515963775 * t2
167 - 0.09748053605 * t2 * t - 0.04347986191 * t4
168 + 0.02182506378 * t4 * t + 0.01074751427 * pow(t, 6);
169 } else if (scaled_diff > 0.1) {
170 // use Taylor expansion centred around x=0.45
171 t = scaled_diff - 0.45;
172 t2 = square(t);
173 t4 = pow(t, 4);
174 dncdf_log = 0.6245634904 - 0.9521866949 * t + 0.3986215682 * t2
175 + 0.04700850676 * t2 * t - 0.03478651979 * t4
176 - 0.01772675404 * t4 * t + 0.0006577254811 * pow(t, 6);
177 } else if (10.0 * log(fabs(scaled_diff))
178 < log(std::numeric_limits<T_partials_return>::max())) {
179 // approximation derived from Abramowitz and Stegun (1964) 7.1.26
180 // use fact that erf(x)=-erf(-x)
181 // Abramowitz and Stegun define this for -inf<x<0 but seems to be
182 // accurate for -inf<x<0.1
183 t = 1.0 / (1.0 - 0.3275911 * scaled_diff);
184 t2 = square(t);
185 t4 = pow(t, 4);
186 dncdf_log
187 = 2.0
188 / (SQRT_PI
189 * (0.254829592 * t - 0.284496736 * t2 + 1.421413741 * t2 * t
190 - 1.453152027 * t4 + 1.061405429 * t4 * t));
191 // check if we need to add a correction term
192 // (from cubic fit of residuals)
193 if (scaled_diff < -29.0) {
194 dncdf_log += 0.0015065154280332 * x2
195 - 0.3993154819705530 * scaled_diff - 4.2919418242931700;
196 } else if (scaled_diff < -17.0) {
197 dncdf_log += 0.0001263257217272 * x2 * scaled_diff
198 + 0.0123586859488623 * x2
199 - 0.0860505264736028 * scaled_diff - 1.252783383752970;
200 } else if (scaled_diff < -7.0) {
201 dncdf_log += 0.000471585349920831 * x2 * scaled_diff
202 + 0.0296839305424034 * x2
203 + 0.207402143352332 * scaled_diff + 0.425316974683324;
204 } else if (scaled_diff < -3.9) {
205 dncdf_log += -0.0006972280656443 * x2 * scaled_diff
206 + 0.0068218494628567 * x2
207 + 0.0585761964460277 * scaled_diff + 0.1034397670201370;
208 } else if (scaled_diff < -2.1) {
209 dncdf_log += -0.0018742199480885 * x2 * scaled_diff
210 - 0.0097119598291202 * x2
211 - 0.0170137970924080 * scaled_diff - 0.0100428567412041;
212 }
213 } else {
214 dncdf_log = stan::math::positive_infinity();
215 }
216
218 partials<0>(ops_partials)[n] += dncdf_log / sigma_sqrt2;
219 }
221 partials<1>(ops_partials)[n] -= dncdf_log / sigma_sqrt2;
222 }
224 partials<2>(ops_partials)[n] -= dncdf_log * scaled_diff / sigma_dbl;
225 }
226 }
227 }
228 return ops_partials.build(cdf_log);
229}
230
231} // namespace math
232} // namespace stan
233#endif
scalar_seq_view provides a uniform sequence-like wrapper around either a scalar or a sequence of scal...
require_all_not_t< is_nonscalar_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_not_nonscalar_prim_or_rev_kernel_expression_t
Require none of the types satisfy is_nonscalar_prim_or_rev_kernel_expression.
return_type_t< T_y_cl, T_loc_cl, T_scale_cl > normal_lcdf(const T_y_cl &y, const T_loc_cl &mu, const T_scale_cl &sigma)
Returns the normal log complementary cumulative distribution function for the given location,...
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
static constexpr double negative_infinity()
Return negative infinity.
size_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
Definition max_size.hpp:19
static constexpr double LOG_HALF
The natural logarithm of 0.5, .
Definition constants.hpp:92
static constexpr double positive_infinity()
Return positive infinity.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
Definition size_zero.hpp:19
fvar< T > log(const fvar< T > &x)
Definition log.hpp:15
bool is_not_nan(const T_y &y)
Return true if y is not NaN.
static constexpr double SQRT_TWO
The value of the square root of 2, .
static constexpr double SQRT_PI
The value of the square root of , .
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
fvar< T > erfc(const fvar< T > &x)
Definition erfc.hpp:15
fvar< T > log1p(const fvar< T > &x)
Definition log1p.hpp:12
void check_finite(const char *function, const char *name, const T_y &y)
Return true if all values in y are finite.
void check_not_nan(const char *function, const char *name, const T_y &y)
Check if y is not NaN.
static constexpr double INV_SQRT_PI
The value of 1 over the square root of , .
void check_positive(const char *function, const char *name, const T_y &y)
Check if y is positive.
fvar< T > pow(const fvar< T > &x1, const fvar< T > &x2)
Definition pow.hpp:19
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
fvar< T > fabs(const fvar< T > &x)
Definition fabs.hpp:15
fvar< T > square(const fvar< T > &x)
Definition square.hpp:12
fvar< T > exp(const fvar< T > &x)
Definition exp.hpp:13
typename ref_type_if< true, T >::type ref_type_t
Definition ref_type.hpp:55
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Definition fvar.hpp:9
Extends std::true_type when instantiated with zero or more template parameters, all of which extend t...