1#ifndef STAN_MATH_PRIM_PROB_NORMAL_LCCDF_HPP
2#define STAN_MATH_PRIM_PROB_NORMAL_LCCDF_HPP
21template <
typename T_y,
typename T_loc,
typename T_scale,
23 T_y, T_loc, T_scale>* =
nullptr>
26 const T_scale& sigma) {
33 static constexpr const char* function =
"normal_lccdf";
35 mu,
"Scale parameter", sigma);
38 T_sigma_ref sigma_ref = sigma;
47 T_partials_return ccdf_log(0.0);
55 for (
size_t n = 0; n < N; n++) {
56 const T_partials_return y_dbl = y_vec.val(n);
57 const T_partials_return mu_dbl = mu_vec.val(n);
58 const T_partials_return sigma_dbl = sigma_vec.val(n);
60 const T_partials_return scaled_diff
61 = (y_dbl - mu_dbl) / (sigma_dbl *
SQRT_TWO);
63 T_partials_return one_m_erf;
67 one_m_erf = 2.0 -
erfc(-scaled_diff);
71 one_m_erf = 1.0 -
erf(scaled_diff);
77 const T_partials_return rep_deriv_div_sigma
81 / one_m_erf / sigma_dbl;
83 partials<0>(ops_partials)[n] -= rep_deriv_div_sigma;
86 partials<1>(ops_partials)[n] += rep_deriv_div_sigma;
89 partials<2>(ops_partials)[n]
90 += rep_deriv_div_sigma * scaled_diff *
SQRT_TWO;
94 return ops_partials.build(ccdf_log);
scalar_seq_view provides a uniform sequence-like wrapper around either a scalar or a sequence of scal...
require_all_not_t< is_nonscalar_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_not_nonscalar_prim_or_rev_kernel_expression_t
Require none of the types satisfy is_nonscalar_prim_or_rev_kernel_expression.
return_type_t< T_y_cl, T_loc_cl, T_scale_cl > normal_lccdf(const T_y_cl &y, const T_loc_cl &mu, const T_scale_cl &sigma)
Returns the normal log complementary cumulative distribution function for the given location,...
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
static constexpr double LOG_HALF
The natural logarithm of 0.5, .
static constexpr double SQRT_TWO_OVER_SQRT_PI
The square root of 2 divided by the square root of , .
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
fvar< T > log(const fvar< T > &x)
fvar< T > erf(const fvar< T > &x)
static constexpr double INV_SQRT_TWO
The value of 1 over the square root of 2, .
static constexpr double SQRT_TWO
The value of the square root of 2, .
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
fvar< T > erfc(const fvar< T > &x)
void check_finite(const char *function, const char *name, const T_y &y)
Return true if all values in y are finite.
void check_not_nan(const char *function, const char *name, const T_y &y)
Check if y is not NaN.
void check_positive(const char *function, const char *name, const T_y &y)
Check if y is positive.
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
static constexpr double INFTY
Positive infinity.
fvar< T > exp(const fvar< T > &x)
typename ref_type_if< true, T >::type ref_type_t
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Extends std::true_type when instantiated with zero or more template parameters, all of which extend t...