Stan Math Library
4.9.0
Automatic Differentiation
|
#include <stan/math/prim/meta.hpp>
#include <stan/math/prim/err.hpp>
#include <stan/math/prim/fun/binomial_coefficient_log.hpp>
#include <stan/math/prim/fun/digamma.hpp>
#include <stan/math/prim/fun/inv.hpp>
#include <stan/math/prim/fun/log.hpp>
#include <stan/math/prim/fun/log1p_exp.hpp>
#include <stan/math/prim/fun/log_sum_exp.hpp>
#include <stan/math/prim/fun/max_size.hpp>
#include <stan/math/prim/fun/scalar_seq_view.hpp>
#include <stan/math/prim/fun/size.hpp>
#include <stan/math/prim/fun/size_zero.hpp>
#include <stan/math/prim/fun/value_of.hpp>
#include <stan/math/prim/functor/partials_propagator.hpp>
#include <cmath>
Go to the source code of this file.
Namespaces | |
namespace | stan |
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation from C or the boost::math::lgamma implementation. | |
namespace | stan::math |
Matrices and templated mathematical functions. | |
Functions | |
template<bool propto, typename T_n , typename T_log_location , typename T_precision , require_all_not_nonscalar_prim_or_rev_kernel_expression_t< T_n, T_log_location, T_precision > * = nullptr> | |
return_type_t< T_log_location, T_precision > | stan::math::neg_binomial_2_log_lpmf (const T_n &n, const T_log_location &eta, const T_precision &phi) |
template<typename T_n , typename T_log_location , typename T_precision > | |
return_type_t< T_log_location, T_precision > | stan::math::neg_binomial_2_log_lpmf (const T_n &n, const T_log_location &eta, const T_precision &phi) |