1#ifndef STAN_MATH_PRIM_PROB_BETA_PROPORTION_LPDF_HPP
2#define STAN_MATH_PRIM_PROB_BETA_PROPORTION_LPDF_HPP
48template <
bool propto,
typename T_y,
typename T_loc,
typename T_prec,
50 T_y, T_loc, T_prec>* =
nullptr>
53 const T_prec& kappa) {
59 static constexpr const char* function =
"beta_proportion_lpdf";
61 mu,
"Precision parameter", kappa);
68 T_kappa_ref kappa_ref = kappa;
75 check_less(function,
"Location parameter", mu_val, 1.0);
84 = to_ref_if<!is_constant_all<T_loc, T_prec>::value>(
log(y_val));
86 = to_ref_if<!is_constant_all<T_loc, T_prec>::value>(
log1m(y_val));
87 const auto& mukappa =
to_ref(mu_val * kappa_val);
90 T_partials_return logp(0);
98 logp +=
sum((mukappa - 1) * log_y + (kappa_val - mukappa - 1) * log1m_y);
102 edge<0>(ops_partials).partials_
103 = (mukappa - 1) / y_val + (kappa_val - mukappa - 1) / (y_val - 1);
113 edge<1>(ops_partials).partials_
115 * (digamma_kappa_mukappa - digamma_mukappa + log_y - log1m_y);
118 edge<2>(ops_partials).partials_
119 =
digamma(kappa_val) + mu_val * (log_y - digamma_mukappa)
120 + (1 - mu_val) * (log1m_y - digamma_kappa_mukappa);
123 return ops_partials.build(logp);
126template <
typename T_y,
typename T_loc,
typename T_prec>
128 const T_y& y,
const T_loc& mu,
const T_prec& kappa) {
129 return beta_proportion_lpdf<false>(y, mu, kappa);
require_all_not_t< is_nonscalar_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_not_nonscalar_prim_or_rev_kernel_expression_t
Require none of the types satisfy is_nonscalar_prim_or_rev_kernel_expression.
return_type_t< T_y_cl, T_loc_cl, T_prec_cl > beta_proportion_lpdf(const T_y_cl &y, const T_loc_cl &mu, const T_prec_cl &kappa)
The log of the beta density for specified y, location, and precision: beta_proportion_lpdf(y | mu,...
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
int64_t size(const T &m)
Returns the size (number of the elements) of a matrix_cl or var_value<matrix_cl<T>>.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
void check_bounded(const char *function, const char *name, const T_y &y, const T_low &low, const T_high &high)
Check if the value is between the low and high values, inclusively.
T to_ref_if(T &&a)
No-op that should be optimized away.
T value_of(const fvar< T > &v)
Return the value of the specified variable.
fvar< T > log(const fvar< T > &x)
auto as_value_column_array_or_scalar(T &&a)
Extract the value from an object and for eigen vectors and std::vectors convert to an eigen column ar...
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
fvar< T > lgamma(const fvar< T > &x)
Return the natural logarithm of the gamma function applied to the specified argument.
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
void check_positive(const char *function, const char *name, const T_y &y)
Check if y is positive.
void check_less(const char *function, const char *name, const T_y &y, const T_high &high, Idxs... idxs)
Throw an exception if y is not strictly less than high.
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
fvar< T > log1m(const fvar< T > &x)
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
fvar< T > digamma(const fvar< T > &x)
Return the derivative of the log gamma function at the specified argument.
typename ref_type_if<!is_constant< T >::value, T >::type ref_type_if_not_constant_t
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Extends std::true_type when instantiated with zero or more template parameters, all of which extend t...
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...