Automatic Differentiation
 
Loading...
Searching...
No Matches

◆ beta_proportion_lpdf() [1/3]

template<bool propto, typename T_y_cl , typename T_loc_cl , typename T_prec_cl , require_all_prim_or_rev_kernel_expression_t< T_y_cl, T_loc_cl, T_prec_cl > * = nullptr, require_any_not_stan_scalar_t< T_y_cl, T_loc_cl, T_prec_cl > * = nullptr>
return_type_t< T_y_cl, T_loc_cl, T_prec_cl > stan::math::beta_proportion_lpdf ( const T_y_cl &  y,
const T_loc_cl &  mu,
const T_prec_cl &  kappa 
)

The log of the beta density for specified y, location, and precision: beta_proportion_lpdf(y | mu, kappa) = beta_lpdf(y | mu * kappa, (1 - mu) * kappa).

Any arguments other than scalars must be containers of the same size. With non-scalar arguments, the return is the sum of the log pdfs with scalars broadcast as necessary.

The result log probability is defined to be the sum of the log probabilities for each observation/mu/kappa triple.

Prior location, mu, must be contained in (0, 1). Prior precision must be positive.

Template Parameters
T_y_cltype of outcome
T_loc_cltype of prior location
T_prec_cltype of prior precision
Parameters
y(Sequence of) dependant variable(s)
mu(Sequence of) location parameter(s)
kappa(Sequence of) precision parameter(s)
Returns
The log of the product of densities.

Definition at line 42 of file beta_proportion_lpdf.hpp.