1#ifndef STAN_MATH_PRIM_FUN_SIN_HPP
2#define STAN_MATH_PRIM_FUN_SIN_HPP
23template <
typename T, require_arithmetic_t<T>* =
nullptr>
24inline auto sin(T&& x) {
35template <
typename T, require_complex_bt<std::is_arithmetic, T>* =
nullptr>
36inline auto sin(T&& x) {
49 static inline auto fun(T&& x) {
50 return sin(std::forward<T>(x));
61template <
typename T, require_ad_container_t<T>* =
nullptr>
62inline auto sin(T&& x) {
63 return apply_scalar_unary<sin_fun, T>::apply(std::forward<T>(x));
74template <
typename Container,
75 require_container_bt<std::is_arithmetic, Container>* =
nullptr>
76inline auto sin(Container&& x) {
78 std::forward<Container>(x), [](
auto&& v) {
return v.array().
sin(); });
std::complex< V > complex_sin(const std::complex< V > &z)
Return the sine of the complex argument.
fvar< T > sin(const fvar< T > &x)
std::complex< T > i_times(const std::complex< T > &z)
Return the specified complex number multiplied by i.
std::complex< T > neg_i_times(const std::complex< T > &z)
Return the specified complex number multiplied by -i.
fvar< T > sinh(const fvar< T > &x)
Matrices and templated mathematical functions.
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Structure to wrap sin() so it can be vectorized.