Stan Math Library
5.0.0
Automatic Differentiation
|
Eigen::Matrix< stan::return_type_t< T_Args... >, Eigen::Dynamic, 1 > stan::math::solve_newton | ( | const F & | f, |
const T & | x, | ||
std::ostream *const | msgs, | ||
const T_Args &... | args | ||
) |
Return the solution to the specified system of algebraic equations given an initial guess, and parameters and data, which get passed into the algebraic system.
Use the KINSOL solver from the SUNDIALS suite.
This signature does not give users control over the tuning parameters and instead relies on default values.
F | type of equation system function |
T | type of elements in the x vector |
Args | types of additional input to the equation system functor |
[in] | f | Functor that evaluates the system of equations. |
[in] | x | Vector of starting values (initial guess). |
[in,out] | msgs | The print stream for warning messages. |
[in] | scaling_step_size | Scaled-step stopping tolerance. If a Newton step is smaller than the scaling step tolerance, the code breaks, assuming the solver is no longer making significant progress (i.e. is stuck) |
[in] | function_tolerance | determines whether roots are acceptable. |
[in] | max_num_steps | maximum number of function evaluations. |
[in,out] | msgs | the print stream for warning messages. |
[in] | args | Additional parameters to the equation system functor. |
<code>std::invalid_argument</code> | if x has size zero. |
<code>std::invalid_argument</code> | if x has non-finite elements. |
<code>std::invalid_argument</code> | if scaled_step_size is strictly negative. |
<code>std::invalid_argument</code> | if function_tolerance is strictly negative. |
<code>std::invalid_argument</code> | if max_num_steps is not positive. |
<code>std::domain_error | if solver exceeds max_num_steps. |
Definition at line 239 of file solve_newton.hpp.