Automatic Differentiation
 
Loading...
Searching...
No Matches

◆ solve_newton()

template<typename F , typename T , typename... T_Args, require_eigen_vector_t< T > * = nullptr>
Eigen::Matrix< stan::return_type_t< T_Args... >, Eigen::Dynamic, 1 > stan::math::solve_newton ( const F &  f,
const T &  x,
std::ostream *const  msgs,
const T_Args &...  args 
)

Return the solution to the specified system of algebraic equations given an initial guess, and parameters and data, which get passed into the algebraic system.

Use the KINSOL solver from the SUNDIALS suite.

This signature does not give users control over the tuning parameters and instead relies on default values.

Template Parameters
Ftype of equation system function
Ttype of elements in the x vector
Argstypes of additional input to the equation system functor
Parameters
[in]fFunctor that evaluates the system of equations.
[in]xVector of starting values (initial guess).
[in,out]msgsThe print stream for warning messages.
[in]scaling_step_sizeScaled-step stopping tolerance. If a Newton step is smaller than the scaling step tolerance, the code breaks, assuming the solver is no longer making significant progress (i.e. is stuck)
[in]function_tolerancedetermines whether roots are acceptable.
[in]max_num_stepsmaximum number of function evaluations.
[in,out]msgsthe print stream for warning messages.
[in]argsAdditional parameters to the equation system functor.
Returns
theta Vector of solutions to the system of equations.
Exceptions
<code>std::invalid_argument</code>if x has size zero.
<code>std::invalid_argument</code>if x has non-finite elements.
<code>std::invalid_argument</code>if scaled_step_size is strictly negative.
<code>std::invalid_argument</code>if function_tolerance is strictly negative.
<code>std::invalid_argument</code>if max_num_steps is not positive.
<code>std::domain_errorif solver exceeds max_num_steps.

Definition at line 239 of file solve_newton.hpp.