Automatic Differentiation
 
Loading...
Searching...
No Matches

◆ bessel_second_kind() [2/5]

template<typename T2 , require_arithmetic_t< T2 > * = nullptr>
T2 stan::math::bessel_second_kind ( int  v,
const T2  z 
)
inline

\[ \mbox{bessel\_second\_kind}(v, x) = \begin{cases} \textrm{error} & \mbox{if } x \leq 0 \\ Y_v(x) & \mbox{if } x > 0 \\[6pt] \textrm{NaN} & \mbox{if } x = \textrm{NaN} \end{cases} \]

\[ \frac{\partial\, \mbox{bessel\_second\_kind}(v, x)}{\partial x} = \begin{cases} \textrm{error} & \mbox{if } x \leq 0 \\ \frac{\partial\, Y_v(x)}{\partial x} & \mbox{if } x > 0 \\[6pt] \textrm{NaN} & \mbox{if } x = \textrm{NaN} \end{cases} \]

\[ Y_v(x)=\frac{J_v(x)\cos(v\pi)-J_{-v}(x)}{\sin(v\pi)} \]

\[ \frac{\partial \, Y_v(x)}{\partial x} = \frac{v}{x}Y_v(x)-Y_{v+1}(x) \]

Definition at line 41 of file bessel_second_kind.hpp.