Stan Math Library
5.0.0
Automatic Differentiation
|
|
inline |
\[ \mbox{bessel\_second\_kind}(v, x) = \begin{cases} \textrm{error} & \mbox{if } x \leq 0 \\ Y_v(x) & \mbox{if } x > 0 \\[6pt] \textrm{NaN} & \mbox{if } x = \textrm{NaN} \end{cases} \]
\[ \frac{\partial\, \mbox{bessel\_second\_kind}(v, x)}{\partial x} = \begin{cases} \textrm{error} & \mbox{if } x \leq 0 \\ \frac{\partial\, Y_v(x)}{\partial x} & \mbox{if } x > 0 \\[6pt] \textrm{NaN} & \mbox{if } x = \textrm{NaN} \end{cases} \]
\[ Y_v(x)=\frac{J_v(x)\cos(v\pi)-J_{-v}(x)}{\sin(v\pi)} \]
\[ \frac{\partial \, Y_v(x)}{\partial x} = \frac{v}{x}Y_v(x)-Y_{v+1}(x) \]
Definition at line 41 of file bessel_second_kind.hpp.