Automatic Differentiation
 
Loading...
Searching...
No Matches
bessel_second_kind.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_FUN_BESSEL_SECOND_KIND_HPP
2#define STAN_MATH_PRIM_FUN_BESSEL_SECOND_KIND_HPP
3
6#include <boost/math/special_functions/bessel.hpp>
7
8namespace stan {
9namespace math {
10
40template <typename T2, require_arithmetic_t<T2>* = nullptr>
41inline T2 bessel_second_kind(int v, const T2 z) {
42 return boost::math::cyl_neumann(v, z);
43}
44
55template <typename T1, typename T2, require_any_container_t<T1, T2>* = nullptr>
56inline auto bessel_second_kind(const T1& a, const T2& b) {
57 return apply_scalar_binary(a, b, [&](const auto& c, const auto& d) {
58 return bessel_second_kind(c, d);
59 });
60}
61
62} // namespace math
63} // namespace stan
64
65#endif
fvar< T > bessel_second_kind(int v, const fvar< T > &z)
auto apply_scalar_binary(const T1 &x, const T2 &y, const F &f)
Base template function for vectorization of binary scalar functions defined by applying a functor to ...
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...