Automatic Differentiation
 
Loading...
Searching...
No Matches

◆ gp_exp_quad_cov() [1/2]

template<typename T_x , typename T_sigma , typename T_l >
Eigen::Matrix< return_type_t< T_x, T_sigma, T_l >, Eigen::Dynamic, Eigen::Dynamic > stan::math::internal::gp_exp_quad_cov ( const std::vector< T_x > &  x,
const T_sigma &  sigma_sq,
const T_l &  neg_half_inv_l_sq 
)
inline

Returns a squared exponential kernel.

Template Parameters
T_xtype for each scalar
T_sigmatype of parameter sigma
T_ltype of parameter length scale
Parameters
xstd::vector of scalars that can be used in square distance. This function assumes each element of x is the same size.
sigma_sqsquare root of the marginal standard deviation or magnitude
neg_half_inv_l_sqThe half negative inverse of the length scale
Returns
squared distance

Definition at line 36 of file gp_exp_quad_cov.hpp.